Advertisements
Advertisements
рдкреНрд░рд╢реНрди
Investigate for what values of ЁЭЭБ "ЁЭТВЁЭТПЁЭТЕ" ЁЭЭА the equations : `2x+3y+5z=9`
`7x+3y-2z=8`
`2x+3y+λz=μ`
Have (i) no solution (ii) unique solution (iii) Infinite value
рдЙрддреНрддрд░
Given eqn :
`2x+3y+5z=9`
`7x+3y-2z=8`
`2x+3y+λz=μ`
` A x=B`
∴ `[[2,3,5],[7,3,-2],[2,3,λ]] [[x],[y],[z]] =[[9],[8],[μ]]`
Argumented matrix is : `[[2,3,5],[7,3,-2],[2,3,λ]][[9],[8],[μ]]`
`R_3-R_1`
→` [[2,3,5],[7,3,-2],[0,0,λ-5]] [[6],[4],[μ-9]]`
(i) When ЁЭЬЖ=5,ЁЭЭБ≠ЁЭЯЧ ЁЭТХЁЭТЙЁЭТЖЁЭТП ЁЭТУ(ЁЭТВ)= )=ЁЭЯР,ЁЭТУ(ЁЭСитЛоЁЭСй)=ЁЭЯС
r(A)≠ЁЭТУ(ЁЭСитЛоЁЭСй)
No Solution.
(ii) When ЁЭЬЖ≠5,ЁЭЭБ≠ЁЭЯЧ ,ЁЭТУ(ЁЭСи)=ЁЭТУ(ЁЭСитЛоЁЭСй)=ЁЭЯС
Unique solution exist.
(iii) When ЁЭЬЖ=5,ЁЭЭБ=ЁЭЯЧ ЁЭТУ(ЁЭСи)=ЁЭТУ(ЁЭСитЛоЁЭСй)=ЁЭЯР<ЁЭЯС
Infinite solution.
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНтАНрди
Find non singular matrices P & Q such that PAQ is in normal form where A `[[2,-2,3],[3,-1,2],[1,2,-1]]`
Reduce the following matrix to its normal form and hence find its rank.
Obtain the root of `x^3-x-1=0` by Newton Raphson Method` (upto three decimal places).
Reduce matrix to PAQ normal form and find 2 non-Singular matrices P & Q.
`[[1,2,-1,2],[2,5,.2,3],[1,2,1,2]]`