Advertisements
Advertisements
प्रश्न
Prove the following identities:
`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`
`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`
`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`
उत्तर
(i) We have,
`LHS = cos4^4 A – cos^2 A = cos^2 A (cos^2 A – 1)`
`= – cos^2 A (1 – cos^2 A) = – cos^2 A sin2A`
`= –(1 – sin^2 A) sin^2 A = – sin^2 A + sin^4 A`
`= sin^4 A – sin^2 A = RHS`
(ii) We have,
`LHS = cot^4 A – 1 = (cosec^2 A – 1)^2 – 1`
`[∵ cot^2 A = cosec^2 A –1 ⇒ cot^4 A = (cosec^2 A – 1)^2 ]`
`= cosec^4 A – 2 cosec^2 A + 1 – 1`
`= cosec^4 A – 2cosec^2 A = RHS`
(iii) We have,
`LHS = sin^6 A + cos^6 A = (sin^2 A)^3 + (cos2 A)^3`
`= (sin^2 A + cos^2 A) {(sin^2 A)^2 + (cos^2 A)^2 – sin^2 A cos^2 A)}`
`[∵ a^3 + b^3 = (a + b) (a^2 – ab + b^2 )]`
`={(sin^2 A)^2 + (cos^2 A)^2 + 2 sin^2 A cos^2 A – sin^2 A cos^2 A}`
`= [(sin^2 A + cos^2 A)^2 – 3 sin^2 A cos^2 A]`
`= 1 – 3sin^2 A cos^2 A = RHS`