Advertisements
Advertisements
प्रश्न
Prove relation between the zeros and the coefficient of the quadratic polynomial ax2 + bx + c
बेरीज
उत्तर
Let a and b be the zeros of the polynomial ax2+bx +c
`α = (-b+sqrt(b^2-4ac))/(2a)`
`β = (-b-sqrt(b^2-4ac))/(2a) `
By adding (1) and (2), we get
`α + β = (-b+sqrt(b^2-4ac))/(2a)+(-b-sqrt(b^2-4ac))/(2a)`
`=(-2b)/(2a) = (-b)/a = `
Hence, sum of the zeros of the polynomial
`ax^2 + bx + c `
By multiplying (1) and (2), we get
`αβ = (-b+sqrt(b^2-4ac))/(2a)xx(-b-sqrt(b^2-4ac))/(2a)`
`= (b^2-b^2+4ac)/(4a^2)`
`= \frac{4ac}{4a^{2}} = \frac{ c }{ a } `
`= `
Hence, product of zeros = `\frac{ c }{ a }`
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?