मराठी

Prove that `1/Sqrt (3)` is Irrational. - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that `1/sqrt (3)` is irrational.

उत्तर

Let  `1/sqrt (3)`  be rational.
∴  `1/sqrt (3) = a/b` , where a, b are positive integers having no common factor other than 1
∴` sqrt(3) = b/a`                        ….(1)
Since a, b are non-zero integers, `b/a`is rational.
Thus, equation (1) shows that `sqrt (3)` is rational.
This contradicts the fact that `sqrt(3)` is rational.
The contradiction arises by assuming `sqrt(3)` is rational.

Hence, `1/sqrt (3)` is irrational.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Real Numbers - Exercises 4

APPEARS IN

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×