मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Prove that 2tan-1(13)+cos-1(35)=π2. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Prove that `2 tan^(-1) (1/3) + cos^(-1) (3/5) = pi/2`.

सिद्धांत

उत्तर

Using the double-angle formula for inverse tangent:

L.H.S. = `2 tan^(-1) (1/3) + cos^(-1) (3/5)`

= `tan^(-1)[(2 xx 1/3)/(1 - 1/3^2)] + cos^(-1) (3/5)   ...[2tan^(-1)x = tan^(-1)((2x)/(1 - x^2))]`

= `tan^(-1)[(2 xx 1/3)/(1 - 1/3^2)] + tan^(-1)sqrt((1 - 9/25)/(3/5))    ...[cos^(-1)x = tan^(-1)(sqrt(1 - x^2)/x)]`

= `tan^(-1)[(2/3)/(1 - 1/9)] + tan^(-1)  sqrt(((25 - 9)/25)/(3/5))`

= `tan^(-1)[(2/3)/((9 - 1)/9)] + tan^(-1)sqrt((16/25)/(3/5))`

= `tan^(-1)((2/3)/(8/9)) + tan^(-1)((4/5)/(3/5))`

= `tan^(-1)(2/3) xx(9/8) + tan^(-1)(4/5) xx (5/3)`

= `tan^(-1)(3/4) + tan^(-1)(4/3)    ...[tan^(-1)a + tan^(-1)b = tan^(-1)((a + b)/(1 - ab))", if " ab < 1]`

= `tan^(-1)((3/4 + 4/3)/(1 - (3/4 xx 4/3)))`

= `tan^(-1)(((9 + 16)/12)/(1 - 1))`

= `tan^(-1)(((25)/12)/(0))`      

= `tan^(-1)(0)  ...(tan0° = pi/2)`

= `pi/2`

= R.H.S.

L.H.S. = R.H.S.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2024-2025 (March) Official
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×