Advertisements
Advertisements
प्रश्न
Prove that: `int_a^b f(x) dx = int_a^b f(a + b - x)dx`
Hence evaluate: `int_0^3 sqrtx/(sqrtx + sqrt(3 - x)) dx`
उत्तर
Proving the Property:
We need to prove,
`int_a^b f(x) dx = int_a^b f(a + b - x)dx`
Using substitution t = a + b − x, so dt = −dx
Changing the limits,
When x = a, then t = b,
When x = b, then t = a
Thus, the integral transforms as,
`int_a^b f(x) dx = int_a^b f(a + b - t)(-dt)`
Reversing the limits removes the negative sign,
`int_a^b f(x) dx = int_a^b f(a + b - x)dx`
Property is proved.
Evaluating the given integral:
We need to evaluate,
`I = int_0^3 sqrtx/(sqrtx + sqrt(3 - x)) dx`
Using the proved property, let:
`f(x) = sqrtx/(sqrtx + sqrt(3 - x))`
Applying the transformation,
`I = int_0^3 sqrt((3 - x))/(sqrt((3 - x)) + sqrtx) dx`
Now adding both integrals,
`I + I = int_0^3 [sqrtx/(sqrtx + sqrt(3 - x)) + sqrt(3 - x)/(sqrt(3 - x) + sqrtx)]dx`
Since,
`sqrtx/(sqrtx + sqrt(3 - x)) + sqrt(3 - x)/(sqrt(3 - x) + sqrtx) = 1`
We get,
`2 I = int_0^3 1dx = 3`
`I = 3/2`