Advertisements
Advertisements
प्रश्न
Prove that :
`cos^-1 (12/13) + sin^-1(3/5) = sin^-1(56/65)`
उत्तर
Let `sin^-1 3/5 = "x"`
Then, `sin"x" = 3/5 ⇒ cos"x" = sqrt(1 - (3/5)^2) = sqrt(16/25) = 4/5`
`∴ tan"x" = 3/4 ⇒ "x" = tan^-1 3/4`
`∴ sin ^-1 3/5 = tan^-1 3/4` ......(1)
Now,let `cos^-1 12/13 = "y".`
Then, `cos"y" = 12/13 ⇒ sin"y" = 5/13`
`∴ tan"y" = 5/12 ⇒ "y" = tan^-1 5/12`
`∴cos^-1 12/13 = tan^-1 5/12` ........(2)
Let `sin^-1 56/65 = "z".`
Then, `sin"z" = 56/65 ⇒ cos"z" = 33/65`
`∴ tan"z" = 56/33 ⇒ "z" = tan^-1 56/33`
`∴sin^-1 56/65 = tan^-1 56/33` .........(3)
Now, we have:
L.H.S. = `cos^-1 12/13 + sin^-1 3/5`
`= tan^-1 5/12 + tan^-1 3/4` .........[Ueing (1) and (2)]
`=tan^-1 (5/12+3/4)/(1-5/12 . 3/4)` ........`[tan^-1"x"+ tan^-1"y"=tan^-1 "x+y"/(1-"xy")]`
` = tan^-1 (20+36)/(48-15)`
`= tan^-1 56/33`
`= sin^-1 56/65 = "R.H.S"` .........[Using (3)]
APPEARS IN
संबंधित प्रश्न
Prove that : `2sin^-1 (3/5) -tan^-1 (17/31) = pi/4.`
The function f(x) = `{{:(sinx/x + cosx",", "if" x ≠ 0),("k"",", "if" x = 0):}` is continuous at x = 0, then the value of k is ______.
The derivative of sin x w.r.t. cos x is ______.
If f(x) = |cosx|, then `"f'"(pi/4)` = ______.
If f(x) = |cosx – sinx| , then `"f'"(pi/4)` = ______.
The derivative of `"cos"^-1 ((1 - "x"^2)/(1 + "x"^2))` with respect to `"cot"^-1 ((1 - 3"x"^2)/(3"x" - "x"^3))` is ____________.
The derivative of `"sin"^-1 ((2"x")/(1 + "x"^2))` with respect to `"tan"^-1 ((2"x")/(1 - "x"^2))` is ____________.
If f(x) `= "tan"^-1 (sqrt((1 + "sin x")/(1 - "sin x"))), 0 le "x" le pi/2, "then" "f'" (pi/6)` is ____________.
Find the intervals in which the function f given by f(x) = x2 – 4x + 6 is strictly increasing:
The derivative of `sin^-1 (2"x" sqrt(1 - "x"^2))` w.r.t sin−1 x, `-1/sqrt2 < "x" < 1/sqrt2`, is:
The real function f(x) = 2x3 – 3x2 – 36x + 7 is:
If tan−1 x = y, then: