Advertisements
Advertisements
प्रश्न
Prove that `log 2 + 16log 16/15 + 12log 25/24 + 7log 81/80` = 1
उत्तर
`log 2 + 16log 16/15 + 12log 25/24 + 7log 81/80`
= `log 2 + log (16/15)^16 + log (25/24)^12 + log (81/80)^7`
=`log 2 + log (2^4/(3 xx 5))^16 + log (5^2/(2^3 xx 3))^12 + log (3^4/(2^4 xx 5))^7`
= `log [2 xx (2^4/(3 xx 5))^16 xx (5^2/(2^3 xx 3))^12 xx (3^4/(2^4 xx 5))^7]`
= `log [2 xx 2^64/(3^16 xx 5^16) xx 5^24/(2^36 xx 3^12) xx 3^28/(2^28 xx 5^7)]`
= `log [(2^65 xx 5^24 xx 3^28)/(3^28 xx 5^23 xx 2^64)]`
= log 2 × 5
= log1010
= 1
APPEARS IN
संबंधित प्रश्न
Let b > 0 and b ≠ 1. Express y = bx in logarithmic form. Also state the domain and range of the logarithmic function
Compute log9 27 – log27 9
Solve log4 28x = 2log28
If a2 + b2 = 7ab, show that `log ("a" + "b")/3 = 1/2(log"a" + log "b")`
If `log x/(y - z) = logy/(z - x) = logz/(x - y)`, then prove that xyz = 1
Solve `log_2 x − 3 log_(1/2) x` = 6
Solve log5 – x (x2 – 6x + 65) = 2
Choose the correct alternative:
The value of `log_(sqrt(5))` 512 is
Choose the correct alternative:
The value of `log_3 1/81` is
Choose the correct alternative:
If `log_(sqrt(x)` 0.25 = 4, then the value of x is
Choose the correct alternative:
The value of logab logbc logca is
Choose the correct alternative:
The value of log3 11 . log11 13 . log13 15 . log15 27 . log27 81 is