Advertisements
Advertisements
प्रश्न
Prove that V(X + b) = V(X)
उत्तर
L.H.S = V(x + b)
= E(x + b)2 – [E(x + b)]2
= E(x2 + 2bx + b2) – [E(x) + b]2
= E(x2) + 2bE(x) + b2 – [E(x)]2 + b2 + 2bE(x)]
= E(x2) + 2bE(x) + b2 – [E(x)]2 + b2 – 2bE(x)]
= E(x2) – [E(x)]2
= V(x)
= R.H.S
L.H.S = R.H.S
Hence proved.
APPEARS IN
संबंधित प्रश्न
For the random variable X with the given probability mass function as below, find the mean and variance.
`f(x) = {{:((4 - x)/6, x = 1"," 2"," 3),(0, "otherwise"):}`
For the random variable X with the given probability mass function as below, find the mean and variance.
`f(x) = {{:(1/2 "e"^(x/2), "for" x > 0),(0, "otherwise"):}`
A commuter train arrives punctually at a station every half hour. Each morning, a student leaves his house to the train station. Let X denote the amount of time, in minutes, that the student waits for the train from the time he reaches the train station. It is known that the pdf of X is
`f(x) = {{:(1/30, 0 < x < 30),(0, "elsewhere"):}`
Obtain and interpret the expected value of the random variable X
Choose the correct alternative:
Four buses carrying 160 students from the same school arrive at a football stadium. The buses carry, respectively, 42, 36, 34, and 48 students. One of the students is randomly selected. Let X denote the number of students that were on the bus carrying the randomly selected student. One of the 4 bus drivers is also randomly selected. Let Y denote the number of students on that bus. Then E(X) and E(Y) respectively are
Choose the correct alternative:
If P(X = 0) = 1 – P(X = 1). If E[X] = 3 Var(X), then P(X = 0) is
The following table is describing about the probability mass function of the random variable X
x | 3 | 4 | 5 |
P(x) | 0.2 | 0.3 | 0.5 |
Find the standard deviation of x.
Let X be a continuous random variable with probability density function
`"f"_x(x) = {{:(2x",", 0 ≤ x ≤ 1),(0",", "otherwise"):}`
Find the expected value of X
Let X be a random variable and Y = 2X + 1. What is the variance of Y if variance of X is 5?
Choose the correct alternative:
If X is a discrete random variable and p(x) is the probability of X, then the expected value of this random variable is equal to
Choose the correct alternative:
E[X – E(X)] is equal to