Advertisements
Advertisements
प्रश्न
Find the values of k for which the quadratic equation (3k + 1) x2 + 2(k + 1) x + 1 = 0 has equal roots. Also, find the roots.
उत्तर
The given quadratic equation is (3k+1)x2+2(k+1)x+1=0.
Since the given quadratic equation has equal roots, its discriminant should be zero.
∴ D = 0
⇒ 4(k+1)2−4×(3k+1)×1=0
⇒4k2+8k+4−12k−4=0
⇒4k2−4k=0
⇒k(k−1)=0
⇒k=0 or 1
Thus, the values of k are 0 and 1.
For k = 0,
(3k+1)x2+2(k+1)x+1=0
⇒x2+2x+1=0
⇒(x+1)2=0
⇒x=−1, −1
For k = 1,
(3k+1)x2+2(k+1)x+1=0
⇒4x2+4x+1=0
⇒(2x+1)2=0
⇒x=−1/2,−1/2
Thus, the equal roots are − 1 and −1/2.
APPEARS IN
संबंधित प्रश्न
Prove that both the roots of the equation (x - a)(x - b) +(x - b)(x - c)+ (x - c)(x - a) = 0 are real but they are equal only when a = b = c.
Solve the following quadratic equation using formula method only :
16x2 = 24x + 1
Determine, if 3 is a root of the given equation
`sqrt(x^2 - 4x + 3) + sqrt(x^2 - 9) = sqrt(4x^2 - 14x + 16)`.
Without actually determining the roots comment upon the nature of the roots of each of the following equations:
x2 - 5x + 7 = 0
Discuss the nature of the roots of the following quadratic equations : `3x^2 - 4sqrt(3)x + 4` = 0
If a = 1, b = 4, c = – 5, then find the value of b2 – 4ac
The value of k for which the equation x2 + 2(k + 1)x + k2 = 0 has equal roots is:
If p, q and r are rational numbers and p ≠ q ≠ r, then roots of the equation (p2 – q2)x2 – (q2 – r2)x + (r2 – p2) = 0 are:
Every quadratic equation has exactly one root.
One root of equation 3x2 – mx + 4 = 0 is 1, the value of m is ______.