Advertisements
Advertisements
प्रश्न
Show that `((19 - 7"i")/(9 + "i"))^12 + ((20 - 5"i")/(7 - 6"i"))^12` is real
उत्तर
`(19 - 7"i")/(9 + "i") xx (9 - "i")/(9 - "i") = (164 - 82"i")/82`
= 2 – i
`(20 - 5"i")/(7 - 6"i") xx (7 + 6"i")/( + 6"i") = (170 + 85"i")/85`
= 2 + i
∴ `((19 - 7"i")/(9 + "i"))^12 + ((20 - 5"i")/(7 - 6"i"))^12`
= `(2 - "i")^12 + (12 + "i")^12`
Let z = `(2 - "i")^12 + (2 + "i")^12`
Then `bar(z) = bar((2 - "i")^12 + (2 + "i")^12` ......`[because bar(z_1 + z_2) = bar(z_1) + bar(z_2)]`
= `bar((2 - 1)^12) + bar((2 + "i")^12)` ......`[because bar((z^"n")) = bar((z))^"n"]`
= `(2 + "i")^12 + (2 - "i")^12`
∴ `bar(z)` = z
∴ z is real.
APPEARS IN
संबंधित प्रश्न
Write the following in the rectangular form:
`bar((5 + 9"i") + (2 - 4"i"))`
Write the following in the rectangular form:
`(10 - 5"i")/(6 + 2"i")`
Write the following in the rectangular form:
`bar(3"i") + 1/(2 - "i")`
If z = x + iy, find the following in rectangular form:
`"Re"(1/z)`
If z = x + iy, find the following in rectangular form:
`"Re"("i"barz)`
If z = x + iy, find the following in rectangular form:
`"Im"(3z + 4bar(z) - 4"i")`
If z1 = 2 – i and z2 = – 4 + 3i, find the inverse of z1, z2 and `("z"_1)/("z"_2)`
The complex numbers u v, , and w are related by `1/u = 1/v + 1/w`. If v = 3 – 4i and w = 4 + 3i, find u in rectangular form
Prove the following properties:
z is real if and only if z = `bar(z)`
Prove the following properties:
Re(z) = `(z + bar(z))/2` and Im(z) = `(z - bar(z))/(2"i")`
Find the least value of the positive integer n for which `(sqrt(3) + "i")^"n"` real
Find the least value of the positive integer n for which `(sqrt(3) + "i")^"n"` purely imaginary