मराठी

Show that the Square of an Odd Positive Integer is of the Form 8q + 1, for Some Integer Q. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the square of an odd positive integer is of the form 8q + 1, for some integer q.

उत्तर

By Euclid’s division algorithm
a = bq + r, where 0 ≤ r ≤ b
Put b = 4
a = 4q + r, where 0 ≤ r ≤ 4
If r = 0, then a = 4q even
If r = 1, then a = 4q + 1 odd
If r = 2, then a = 4q + 2 even
If r = 3, then a = 4q + 3 odd
Now, (4𝑞 + 1)2 = (4𝑞)2 + 2(4𝑞)(1) + (1)2
= 16𝑞2 + 8𝑞 + 1
= 8(2𝑞2 + 𝑞) + 1
= 8m + 1 where m is some integer
Hence the square of an odd integer is of the form 8q + 1, for some integer q

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Real Numbers - Exercise 1.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 1 Real Numbers
Exercise 1.1 | Q 10 | पृष्ठ १०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×