मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

Show that the lines x-33=y-3-1,z-1 = 0 and x-62=z-13,y-2 = 0 intersect. Aslo find the point of intersection - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the lines `(x - 3)/3 = (y - 3)/(-1), z - 1` = 0 and `(x - 6)/2 = (z - 1)/3, y - 2` = 0 intersect. Aslo find the point of intersection

बेरीज

उत्तर

`(x - 3)/3 = (y - 3)/(-1), z - 1` = 0 ⇒  z = 1

`(x - 6)/2 = (z - 1)/3, y - 2` = 0 ⇒ y = 2

(x1, y1, z1) = (3, 3, 1) and (x2, y2, z2) = (6, 2, 1)

(b1, b2, b3) = (3, –1, 0) and (d1, d2, d3) = (2, 0, 3)

Condition for intersection of two lines

`|(x_2 - x_1, y_2 - y_1, z_2 - z_1),("b"_1, "b"_2, "b"_3),("d"_1, "d"_2, "d"_3)|` = 0

`|(3, -1, 0),(3, 1, 0),(2, 1, 3)|` = 0  Since (R1 = R2)

∴ Given two lines are intersecting lines.

Any point on the first time

`(x - 3)/3 = (y - 3)/(-1) = lambda` and z = 1

`(3lambda + 3, -lambda + 3, 1)`

Any point on the Second line

`(x - 6)/2 = (z - 1)/3 = mu` and y = 2

`(2mu + 6, 2, 3mu + 1)`

∴ `3mu + 1` = 1

`3mu` = 0

`mu` = 0

`-lambda + 3` = 2

`-lambda` = – 1

`lamda` = 1

∴ The required point of intersection is (6, 2, 1)

shaalaa.com
Application of Vectors to 3-dimensional Geometry
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Applications of Vector Algebra - Exercise 6.5 [पृष्ठ २५५]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 6 Applications of Vector Algebra
Exercise 6.5 | Q 4 | पृष्ठ २५५

संबंधित प्रश्‍न

Find the parametric form of vector equation and Cartesian equations of the straight line passing through the point (– 2, 3, 4) and parallel to the straight line `(x - 1)/(-4) = (y + 3)/5 = (8 - z)/6`


Find the points where the straight line passes through (6, 7, 4) and (8, 4, 9) cuts the xz and yz planes


Find the direction cosines of the straight line passing through the points (5, 6, 7) and (7, 9, 13). Also, find the parametric form of vector equation and Cartesian equations of the straight line passing through two given points


Find the acute angle between the following lines.

`vec"r" = (4hat"i" - hat"j") + "t"(hat"i" + 2hat"j" - 2hat"k")`


Find the acute angle between the following lines.

`(x + 4)/3 = (y - 7)/4 = (z + 5)/5, vec"r" = 4hat"k" + "t"(2hat"i" + hat"j" + hat"k")`


Find the acute angle between the following lines.

2x = 3y = – z and 6x = – y = – 4z


The vertices of ΔABC are A(7, 2, 1), 5(6, 0, 3), and C(4, 2, 4). Find ∠ABC


f the straight line joining the points (2, 1, 4) and (a – 1, 4, – 1) is parallel to the line joining the points (0, 2, b – 1) and (5, 3, – 2) find the values of a and b


If the straight lines `(x - 5)/(5"m" + 2) = (2 - y)/5 = (1 - z)/(-1)` and x = `(2y + 1)/(4"m") = (1 - z)/(-3)` are perpendicular to ech other find the  value of m


Show that the points (2, 3, 4), (– 1, 4, 5) and (8, 1, 2) are collinear


If the two lines `(x - 1)/2 = (y + 1)/3 = (z - 1)/4` and `(x - 3)/1 = (y - "m")/2` = z intersect at a point, find the value of m


Find the parametric form of vector equation of the straight line passing through (−1, 2, 1) and parallel to the straight line `vec"r" = (2hat"i" + 3hat"j" - hat"k") + "t"(hat"i" - 2hat"j" + hat"k")` and hence find the shortest distance between the lines


Find the foot of the perpendicular drawn: from the point (5, 4, 2) to the line `(x + 1)/2 = (y - 3)/3 = (z - 1)/(-1)`. Also, find the equation of the perpendicular


Choose the correct alternative:

If `[vec"a", vec"b", vec"c"]` = 1, then the value of `(vec"a"*(vec"b" xx vec"c"))/((vec"c" xx vec"a")*vec"b") + (vec"b"*(vec"c" xx vec"a"))/((vec"a" xx vec"b")*vec"c") + (vec"c"*(vec"a" xx vec"b"))/((vec"c" xx vec"b")*vec"a")` is


Choose the correct alternative:

The vector equation `vec"r" = (hat"i" - hat"j" - hat"k") + "t"(6hat"i" - hat"k")` represents a straight line passing through the points


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×