Advertisements
Advertisements
प्रश्न
Simple interest on a sum of money for 2 years at \[6\frac{1}{2} %\] per annum is Rs 5200. What will be the compound interest on the sum at the same rate for the same period?
उत्तर
\[P = \frac{SI \times 100}{RT}\]
\[ \therefore P = \frac{5, 200 \times 100}{6 . 5 \times 2}\]
\[ = 40, 000\]
Now,
\[A = P \left( 1 + \frac{R}{100} \right)^n \]
\[ = 40, 000 \left( 1 + \frac{6 . 5}{100} \right)^2 \]
\[ = 40, 000 \left( 1 . 065 \right)^2 \]
\[ = 45, 369\]
Also,
CI = A - P
= 45, 369 - 40, 000
= 5, 369
Thus, the required compound interest is Rs 5, 369.
APPEARS IN
संबंधित प्रश्न
The difference between the compound interest and simple interest on a certain sum for 2 years at 7.5% per annum is Rs 360. Find the sum.
Rs. 8,000 is lent out at 7% compound interest for 2 years. At the end of the first year Rs. 3,560 are returned. Calculate :
(i) the interest paid for the second year.
(ii) the total interest paid in two years.
(iii) the total amount of money paid in two years to clear the debt.
The cost of a machine depreciated by Rs. 4,000 during the first year and by Rs. 3,600 during the second year. Calculate :
- The rate of depreciation.
- The original cost of the machine.
- Its cost at the end of the third year.
A man borrows Rs 62500 at 8% p.a., simple interest for 2 years. He immediately lends the money out at CI at the same rate and for same time. What is his gain at the end of 2 years?
The compound interest payable annually on a certain sum for 2 years is Rs 40.80 and the simple interest is Rs 40. Find the sum and the rate percent.
The difference between the C.I and S.I for 2 years for a principal of ₹ 5000 at the rate of interest 8% p.a is ___________
Find the compound interest on ₹ 3200 at 2.5% p.a for 2 years, compounded annually
The number of conversion periods in a year, if the interest on a principal is compounded every two months is ___________
The time taken for ₹ 4400 to become ₹ 4851 at 10%, compounded half yearly is _______
The cost of a machine is ₹ 18000 and it depreciates at `16 2/3 %` annually. Its value after 2 years will be ___________