Advertisements
Advertisements
प्रश्न
Solution of the differential equation `dy/dx = ((tanx - y))/(cos^2x)` is ______
पर्याय
`y = tanx - 1 + ce^{-tanx}`
`y^2 = tanx - 1 + ce^{tanx}`
`ye^{tanx} = tanx - 1 + c`
`ye^{-tanx} = tanx - 1 + c`
MCQ
रिकाम्या जागा भरा
उत्तर
Solution of the differential equation `dy/dx = ((tanx - y))/(cos^2x)` is `underline(y = tanx - 1 + ce^{-tanx})`.
Explanation:
`dy/dx = ((tanx - y))/(cos^2x)`
⇒ `dy/dx = tanx sec^2x - ysec^2x`
⇒ `dy/dx + ysec^2x = tanx sec^2x`
Here, P = `sec^2x`, Q = `tanx sec^2x`
∴ I.F. = `e^{int sec^2x dx} = e^{tanx}`
∴ solution of the given equation is
`y . e^{tanx} = int tanx . sec^2x e^{tanx} dx + c`
Put tan x = t ⇒ sec2x dx = dt
∴ `y e^{tanx} = int t e^t dt + c`
⇒ `y e^{tanx} = t e^t - e^t + c`
⇒ `y e^tanx = e^tanx(tanx - 1) + c`
⇒ `y = tanx - 1 + c.e^-tanx`
shaalaa.com
Solution of a Differential Equation
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?