Advertisements
Advertisements
प्रश्न
Solve `\frac{2}{x+2y}+\frac{6}{2x-y}=4\text{ ;}\frac{5}{2( x+2y)}+\frac{1}{3( 2x-y)}=1` where, x + 2y ≠ 0 and 2x – y ≠ 0
उत्तर
Taking `\frac { 1 }{ x+2y } = u and \frac { 1 }{ 2x-y } = v` , the above system of equations becomes
2u + 6v = 4 ….(1)
`\frac { 5u }{ 2 } + \frac { v }{ 3 } = 1 ….(2)`
Multiplying equation (2) by 18, we have;
45u + 6v = 18 ….(3)
Now, subtracting equation (3) from equation (1), we get ;
`–43u = – 14 ⇒ u = \frac { 14 }{ 43 }`
Putting u = 14/43 in equation (1), we get
`2 × \frac { 14 }{ 43 } + 6v = 4`
`⇒ 6v = 4 – \frac { 28 }{ 43 } = \frac { 172-28 }{ 43 } ⇒ v = \frac {144 }{ 43 }`
Now,
`u = \frac { 14 }{ 43 } = \frac { 1 }{ x+2y }`
⇒ 14x + 28y = 43 ….(4)
And,
`v = \frac { 144 }{ 43 } = \frac { 1 }{ 2x-y }`
⇒ 288x – 144y = 43 ….(5)
Multiplying equation (4) by 288 and (5) by 14, the system of equations becomes
288 × 14x + 28y × 288 = 43 × 288
288x × 14 – 144y × 14 = 43 × 4
⇒ 4022x + 8064y = 12384 ….(6)
4022x – 2016y = 602 ….(7)
Subtracting equation (7) from (6), we get
10080y = 11782 ⇒ y = 1.6(approx)
Now, putting 1.6 in (4), we get,
14x + 28 × 1.6 = 63
⇒ 14x + 44.8 = 63 ⇒ 14x = 18.2
⇒ x = 1.3 (approx)
Thus, solution of the given system of equation is x = 1.3 (approx), y = 1.6 (approx).