Advertisements
Advertisements
प्रश्न
Solve (a – b) x + (a + b) y = `a^2 – 2ab – b^2 (a + b) (x + y) = a^2 + b^2`
बेरीज
उत्तर
The given system of equation is
`(a – b) x + (a + b) y = a^2 – 2ab – b^2 ….(1)`
`(a + b) (x + y) = a^2 + b^2 ….(2)`
`⇒ (a + b) x + (a + b) y = a^2 + b^2 ….(3)`
Subtracting equation (3) from equation (1), we get
`(a – b) x – (a + b) x = (a^2 – 2ab– b^2 ) – (a^2 + b^2 )`
`⇒ –2bx = – 2ab – 2b^2`
`⇒x=(-2ab)/(-2b)-(2b^2)/(-2b) = a + b`
Putting the value of x in (1), we get
`⇒ (a – b) (a + b) + (a + b) y = a^2 – 2ab – b^2`
`⇒ (a + b) y = a^2 – 2ab – b^2 – (a^2 – b^2 )`
⇒ (a + b) y = – 2ab
`⇒ y = \frac { -2ab }{ a+b }`
Hence, the solution is x = a + b,
`y = \frac { -2ab }{ a+b }`
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?