Advertisements
Advertisements
प्रश्न
Solve each of the following equation and also check your result in each case:
\[\frac{(1 - 2x)}{7} - \frac{(2 - 3x)}{8} = \frac{3}{2} + \frac{x}{4}\]
उत्तर
\[\frac{1 - 2x}{7} - \frac{2 - 3x}{8} = \frac{3}{2} + \frac{x}{4}\]
\[\text{ or }\frac{1 - 2x}{7} = \frac{3}{2} + \frac{x}{4} + \frac{2 - 3x}{8}\]
\[\text{ or }\frac{1 - 2x}{7} = \frac{12 + 2x + 2 - 3x}{8}\]
\[\text{ or }\frac{1 - 2x}{7} = \frac{14 - x}{8}\]
\[\text{ or }8 - 16x = 98 - 7x\]
\[\text{ or }- 16x + 7x = 98 - 8\]
\[\text{ or }x = \frac{- 90}{9}\]
\[ = - 10\]
\[\text{ Check: }\]
\[\text{ L . H . S .} = \frac{1 - 2 \times \left( - 10 \right)}{7} - \frac{2 - 3 \times \left( - 10 \right)}{8} = \frac{1 + 20}{7} - \frac{2 + 30}{8} = 3 - 4 = - 1\]
\[\text{ R . H . S . }= \frac{3}{2} + \frac{- 10}{4} = \frac{3}{2} + \frac{- 5}{2} = \frac{3 - 5}{2} = - 1\]
∴ L.H.S. = R.H.S. for x = -10
APPEARS IN
संबंधित प्रश्न
Solve the following equation and verify your answer:
Solve the following equation and verify your answer:
Solve the following equation and verify your answer:
Solve: y - `3 1/2` = 6
Solve: 4x + 2x = 3 + 5
Solve: `5 2/3 - "z" = 2 1/2`
Solve: 1.6z = 8
Solve: 2y – 5 = -11
Solve: 5(x - 2)- 2(x + 2) = 3
A linear equation in one variable has ______.