मराठी

Solve the Following Quadratic Equations by Factorization: `A/(X-a)+B/(X-b)=(2c)/(X-c)` - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following quadratic equations by factorization:

`a/(x-a)+b/(x-b)=(2c)/(x-c)`

उत्तर

We have been given,

`a/(x-a)+b/(x-b)=(2c)/(x-c)`

a(x - b)(x - c) + b(x - a)(x - c) = 2c(x - a)(x - b)

a(x2-(b + c)x + bc) + b(x2 - (a + c)x + ac) = 2c(x2 - (a + b)x + ab)

(a + b - 2c)x2 - (2ab - ac - bc)x = 0

x[(a + b - 2c)x - (2ab - ac - bc)] = 0

Therefore,

x = 0

Or,

(a + b - 2c)x - (2ab - ac - bc) = 0

(a + b - 2c)x = (2ab - ac - bc)

`x=(2ab - ac - bc)/(a + b - 2c)`

Hence, x = 0 or `x=(2ab - ac - bc)/(a + b - 2c)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Quadratic Equations - Exercise 4.3 [पृष्ठ २१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 4 Quadratic Equations
Exercise 4.3 | Q 49 | पृष्ठ २१
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×