मराठी

Solve the Following Systems of Equations: `2/X + 3/Y = 9/(Xy)` `4/X + 9/Y = 21/(Xy), X != 0, Y != 0` - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following systems of equations:

`2/x + 3/y = 9/(xy)`

`4/x + 9/y = 21/(xy), where x != 0, y != 0`

उत्तर

The system of given equation is

`2/x + 3/y = 9/(xy)` ....(i)

`4/x + 9/y = 21/(xy), x != 0, y != 0`  ......(ii)

Multiplying equation (i) adding equation (ii) by ,xy we get

2y + 3x = 9 ....(iii)

4y + 9x = 21 .....(iv)

From (iii), we get

3x = 9 - 2y

`=> x = (9 - 2y)/3`

Substituting x `= (9 - 2y)/3` in equation (iv) weget

`4x + 9((9 - 2y)/3) = 21`

=> 4y + 3(9 - 2y) = 21

=> 4y + 27 - 6y = 21

`=> -2y = 21 - 27`

=> -2y = -6

`=> y = (-6)/(-2) = 3`

Putting y = 3 in x = (9 - 2y)/3 we get

`x = (9 - 2xx3)/3`

`= (9-6)/3`

= 3/3

= 1
Hence, solution of the system of equation is x = 1, y = 3

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Pair of Linear Equations in Two Variables - Exercise 3.3 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 3 Pair of Linear Equations in Two Variables
Exercise 3.3 | Q 22 | पृष्ठ ४५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×