Advertisements
Advertisements
рдкреНрд░рд╢реНрди
Solve by method of variation of parameters
`(d^2y)/dx^2+3 dy/dx+2y=e^(e"^x)`
рдЙрддреНрддрд░
A.E: ЁЭР╖2+3ЁЭР╖+2=0
Solving the equation, we get
∴` D=-1,-2`
∴` C.F=C_1 e^-x +C_2 e^-(2x)`
∴` y_1=e^-x y_2 = e^(-2x)`
∴ `y'1=-e^-x` ` y'2=-2e^(-2x)`
∴ W=`|[y_1,y_2],[y'_1,y'_2]| = |[e_-x,e^(-2x)],[-e^-x,-2e^(-2x)]|`
=`-2e^(-3x)+e^(-3x)`
=`-e^(-3x)`
`x=e^(e^x)`
∴ `u=- int (y^2x)/W dx`
=`-int (e^-2x e^e"^x)/-e^-3x dx `
= `-int ^(e^e"^x).e^x dx`
Put `e^x=t`
`e^x dx=dt`
∴` int e^t dt=e^t+c.`
∴` W=e^(e^x)+c`
`v= int (y_1 X)/w dx`
`v= int (e^-x e^(e^x))/(-e-3x) dx`
`V= int e^(e^x) e^(2x) dx`
Putting` e^x=t`
∴` v= int e^t. t dt= te^t-e^t`
∴ `v= e^x e^(e^x)-e^(e^x)`
∴` P.I=uy_1+vy_2= e^(e^x) . e^-x- (e^x e^(e^x)-e^(e^x))e^(-2x)`
=`e^-2x. e^(e^x)`
∴ The complete solution is,
y=C.f+P.I
`y=c_1 e^-x+C_2e^- 2x +e^-2x.e^e^x`
`
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНтАНрди
Show that `int_0^1(x^a-1)/logx dx=log(a+1)`
Solve by variation of parameter method `(d^2y)/(dx^2)+3(dy)/(dx)+2y=e^(e^x)`.
Given `int_0^x 1/(x^2+a^2) dx=1/atan^(-1)(x/a)`using DUIS find the value of `int_0^x 1/(x^2+a^2) `
Solve by method of variation of parameters :`(D^2-6D+9)y=e^(3x)/x^2`