मराठी

Solve the differential equation dydx+xy=xy2 and find the particular solution when y = 4, x = 1. -

Advertisements
Advertisements

प्रश्न

Solve the differential equation dydx+xy=xy2 and find the particular solution when y = 4, x = 1.

बेरीज

उत्तर

dydx+xy=xy2 

dydx=xy(y-1)

dyy(y-1)=x dx

 dyy(y-1)=x dx

Let 1y(y-1)=Ay+By-1

∴ 1 = A(y – 1) + By

Put y = 1,

B = 1,

Put y = 0,

A = – 1

(-1y+1y-1)dy=x dx

∴  – log y + log(y – 1) = x22+c

log(y-1y)=x22+c  ...(1)

Put y = 4,

x = 1

log(34)=12+c

∴ c = log(34)-12

∴ From (1), the particular solution is

log(y-1y)=x22+log(34)-12

i.e. log[4(y-1)3y]=x2-12

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.