Advertisements
Advertisements
प्रश्न
Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.
Solution: (x2 + y2) dx - 2xy dy = 0
∴ `dy/dx=(x^2+y^2)/(2xy)` ...(1)
Puty = vx
∴ `dy/dx=square`
∴ equation (1) becomes
`x(dv)/dx = square`
∴ `square dv = dx/x`
On integrating, we get
`int(2v)/(1-v^2) dv =intdx/x`
∴ `-log|1-v^2|=log|x|+c_1`
∴ `log|x| + log|1-v^2|=logc ...["where" - c_1 = log c]`
∴ x(1 - v2) = c
By putting the value of v, the general solution of the D.E. is `square`= cx
उत्तर
(x2 + y2) dx - 2xy dy = 0
∴ `dy/dx=(x^2+y^2)/(2xy)` ...(1)
Puty = vx
∴ `dy/dx=bb(v+x(dv)/dx)`
∴ equation (1) becomes
`v+x(dv)/dx = (x^2 + v^2x^2)/(2x.vx) = (1+v^2)/(2v)`
∴ `x(dv)/dx= (1+v^2)/(2v) - v = (1+v^2-2v^2)/(2v)`
`x(dv)/dx = bb((1+v^2)/(2v))`
∴ `bb((2v)/(1-v^2)) dv = dx/x`
On integrating, we get
`int(2v)/(1-v^2) dv =intdx/x`
`-int(-2v)/(1-v^2) dv =intdx/x`
∴ `-log|1-v^2|=log|x|+c_1 ...[∵d/dx(1-v^2) = -2v "and" int(f^'(x))/f(x) dx = log|f(x)|+c]`
∴ `log|x| + log|1-v^2|=logc ...["where" - c_1 = log c]`
∴ `log|x(1-v^2)|=logc`
∴ x(1 - v2) = c
By putting the value of v, the general solution of the D.E. is
`x(1-y^2/x^2)=c`
∴`x((x^2 - y^2)/x^2) = c`
`bb(x^2 - y^2)` = cx