मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

Solve the following systems of linear equations by Cramer’s rule: 3x + 3y – z = 11, 2x – y + 2z = 9, 4x + 3y + 2z = 25 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following systems of linear equations by Cramer’s rule:

3x + 3y – z = 11, 2x – y + 2z = 9, 4x + 3y + 2z = 25

बेरीज

उत्तर

Δ = `|(3, 3, -1),(2, -1, 2),(4, 3, 2)|`

= 3(– 2 – 6) – 3(4 – 8) –1(6 + 4)

= 3(– 8) – 3(– 4) – 1(10)

= – 24 + 12 – 10

= – 22 ≠ 0

Δx = `|(11, 3, -1),(9, -1, 2),(25, 3, 2)|`

= 11 (– 2 – 6) – 3(18 – 50) – 1(27 + 25)

= 11(– 8) – 3(32) – 1(52)

= – 88 + 96 – 52

= – 44

Δy = `|(3, 11, -1),(2, 9, 2),(4, 25, 2)|`

= 3(18 – 50) – 11(4 – 8) – 1(50 – 36)

= 3(32) – 11(4) – 1(14)

= – 96 + 44 – 14

= – 66

Δx = `|(3, 3, 11),(2, -1, 9),(4, 3, 25)|`

= 3(– 25 – 27) – 3(50 – 36) + 11(6 + 4)

= 3(– 52) – 3(14) + 11(10)

= – 156 – 42 + 110

= – 88

By Cramer's rule x = `Delta_x/Delta = (-44)/(-22)` = 2

y = `Delta_y/Delta = (-66)/(-22)` = 3

z = `Delta_z/Delta = (-88)/(-22)` = 4

∴ x = 2, y = 3, z = 4.

shaalaa.com
Applications of Matrices: Solving System of Linear Equations
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Applications of Matrices and Determinants - Exercise 1.4 [पृष्ठ ३५]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 1 Applications of Matrices and Determinants
Exercise 1.4 | Q 1. (iii) | पृष्ठ ३५

संबंधित प्रश्‍न

Solve the following system of linear equations by matrix inversion method:

2x + 5y = – 2, x + 2y = – 3


Solve the following system of linear equations by matrix inversion method:

2x + 3y – z = 9, x + y + z = 9, 3x – y – z = – 1


A man is appointed in a job with a monthly salary of certain amount and a fixed amount of annual increment. If his salary was ₹ 19,800 per month at the end of the first month after 3 years of service and ₹ 23,400 per month at the end of the first month after 9 years of service, find his starting salary and his annual increment. (Use matrix inversion method to solve the problem.)


Four men and 4 women can finish a piece of work jointly in 3 days while 2 men and 5 women can finish the same work jointly in 4 days. Find the time taken by one man alone and that of one woman alone to finish the same work by using matrix inversion method


The prices of three commodities A, B and C are ₹ x, y and z per units respectively. A person P purchases 4 units of B and sells two units of A and 5 units of C. Person Q purchases 2 units of C and sells 3 units of A and one unit of B . Person R purchases one unit of A and sells 3 unit of B and one unit of C. In the process, P, Q and R earn ₹ 15,000, ₹ 1,000 and ₹ 4,000 respectively. Find the prices per unit of A, B and C. (Use matrix inversion method to solve the problem.)


Solve the following systems of linear equations by Cramer’s rule:

5x – 2y + 16 = 0, x + 3y – 7 = 0


Solve the following systems of linear equations by Cramer’s rule:

`3/2 + 2y = 12, 2/x + 3y` = 13


Solve the following systems of linear equations by Cramer’s rule:

`3/x - 4/y - 2/z - 1` = 0, `1/x + 2/y + 1/z - 2` = 0, `2/x - 5/y - 4/z + 1` = 0


A chemist has one solution which is 50% acid and another solution which is 25% acid. How much each should be mixed to make 10 litres of a 40% acid solution? (Use Cramer’s rule to solve the problem).


A fish tank can be filled in 10 minutes using both pumps A and B simultaneously. However, pump B can pump water in or out at the same rate. If pump B is inadvertently run in reverse, then the tank will be filled in 30 minutes. How long would it take each pump to fill the tank by itself? (Use Cramer’s rule to solve the problem)


A family of 3 people went out for dinner in a restaurant. The cost of two dosai, three idlies and two vadais is ₹ 150. The cost of the two dosai, two idlies and four vadais is ₹ 200. The cost of five dosai, four idlies and two vadais is ₹ 250. The family has ₹ 350 in hand and they ate 3 dosai and six idlies and six vadais. Will they be able to manage to pay the bill within the amount they had?


A boy is walking along the path y = ax2 + bx + c through the points (– 6, 8), (– 2, – 12), and (3, 8). He wants to meet his friend at P(7, 60). Will he meet his friend? (Use Gaussian elimination method.)


Choose the correct alternative:

If A = `[(3/5, 4/5),(x, 3/5)]` and AT = A–1, then the value of x is


Choose the correct alternative:

If A = `[(1, tan  theta/2),(- tan theta/2, 1)]` and AB = I2, then B = 


Choose the correct alternative:

If A = `[(costheta, sintheta),(-sintheta, costheta)]` and A(adj A) = `[("k", 0),(0, "k")]`, then k =


Choose the correct alternative:

If A = `[(2, 3),(5, -2)]` be such that λA–1 = A, then λ is


Choose the correct alternative:

If adj A = `[(2, 3),(4, 1)]` and adj B = `[(1, -2),(-3, 1)]` then adj (AB) is


Choose the correct alternative:

Let A = `[(2, -1, 1),(-1, 2, -1),(1, -1, 2)]` and 4B = `[(3, 1, -1),(1, 3, x),(-1, 1, 3)]`. If B is the inverse of A, then the value of x is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×