Advertisements
Advertisements
प्रश्न
Solve the inequation 18 – 3 (2x – 5) > 12; x ∈ W.
उत्तर
18 – 3 (2x – 5) > 12; x ∈ W.
⇒ 18 - 6x + 15 > 12
⇒ 33 - 6x > 12
⇒ - 33 + 33 - 6x > 12 - 333
⇒ - 6x < - 21
⇒ `(-6x)/(-6)< (-21)/-6`
⇒ n <`21/6`
⇒ n < 3.5
But x ∈ W, x = 0, 1, 2, 3
∴ Solution set = {0, 1, 2, 3}
APPEARS IN
संबंधित प्रश्न
If the replacement set is the set of natural numbers, solve: x + 1 ≤ 7
If the replacement set is the set of natural numbers, solve: 3x - 4 > 6
If the replacement set is the set of natural numbers, solve: 4x + 1 ≥ 17
If the replacement set = {- 6,. - 3, 0, 3, 6, 9}; find the truth set of the following : 2x - 1 > 9
If the replacement set = {- 6,. - 3, 0, 3, 6, 9}; find the truth set of the following : 3x + 7 < 1
Solve : `2/3"x" + 8 < 12; "x" ∈ "W"`
Solve: `-5 ("x" + 4) > 30 ; "x" ∈ "Z"`
Solve the inequation `("2x" + 1)/3 + 15 ≤ 17;` x ∈ W.
Solve: 4x - 5 > 10 - x, x ∈ {0, 1, 2, 3, 4, 5, 6, 7}.
Solve: `("2x" + 3)/5 > ("4x" - 1)/2`, x ∈ W.