Advertisements
Advertisements
प्रश्न
Solve the pair of linear (simultaneous) equation by the method of elimination by substitution :
y = 4x - 7
16x - 5y = 25
उत्तर
y = 4x - 7 ....(1)
16x - 5y = 25 ....(2)
y = 4x - 7
Putting this value of y in (2)
∴ 16x - 5 (4x - 7) = 25
∴ 16x - 20x + 35 = 25
∴ - 4x = - 10
∴ x = `5/2`
From (1)
y = `4(5/2) - 7`
⇒ y = 10 - 7
⇒ y = 3
Solution is x = `5/2` and y = 3.
APPEARS IN
संबंधित प्रश्न
Solve the pair of linear (simultaneous) equation by the method of elimination by substitution :
2x - 3y = 7
5x + y= 9
Solve the following pair of linear (simultaneous) equation by the method of elimination by substitution:
1.5x + 0.1y = 6.2
3x - 0.4y = 11.2
Solve the following pair of linear (simultaneous) equation using method of elimination by substitution:
3x + 2y =11
2x - 3y + 10 = 0
Solve the following pair of linear (simultaneous) equation using method of elimination by substitution :
2x - 3y + 6 = 0
2x + 3y - 18 = 0
Solve the following pair of linear (simultaneous) equation using method of elimination by substitution:
`[3x]/2 - [5y]/3 + 2 = 0`
`x/3 + y/2 = 2 1/6`
Solve the following simultaneous equations by the substitution method:
2x + y = 8
3y = 3 + 4x
Solve the following simultaneous equations by the substitution method:
2x + 3y = 31
5x - 4 = 3y
Solve the following simultaneous equations by the substitution method:
7x - 3y = 31
9x - 5y = 41
Solve the following simultaneous equations by the substitution method:
0.5x + 0.7y = 0.74
0.3x + 0.5y = 0.5
Solve the following simultaneous equations by the substitution method:
7(y + 3) - 2(x + 2) = 14
4(y - 2) + 3(x - 3) = 2
If a number is thrice the other and their sum is 68, find the numbers.
In a ABC, ∠A = x°, ∠B = (2x - 30)°, ∠C = y° and also, ∠A + ∠B = one right angle. Find the angles. Also, state the type of this triangle.
The ratio of passed and failed students in an examination was 3 : 1. Had 30 less appeared and 10 less failed, the ratio of passes to failures would have been 13 : 4. Find the number of students who appeared for the examination.
Solve by the method of elimination
`x/10 + y/5` = 14, `x/8 + y/6` = 15
Solve by the method of elimination
`4/x + 5y` = 7, `3/x + 4y` = 5
The monthly income of A and B are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves ₹ 5,000 per month, find the monthly income of each
Five years ago, a man was seven times as old as his son, while five year hence, the man will be four times as old as his son. Find their present age