Advertisements
Advertisements
प्रश्न
Solve:
`(x^2 + 1/x^2) - 3(x - 1/x) - 2 = 0`
उत्तर
`(x^2 + 1/x^2) - 3(x - 1/x) - 2 = 0`
Let `x - 1/x = y`
Squaring on both sides
`x^2 + 1/x^2 - 2 = y^2`
`=> x^2 + 1/x^2 = y^2 + 2`
Putting these values in the given equation
(y2 + 2) – 3y – 2 = 0
`=>` y2 – 3y = 0
`=>` y(y – 3) = 0
If y = 0 or y – 3 = 0
Then y = 0 or y = 3
`=> x - 1/x = 0` or `x - 1/x = 3`
`=> (x^2 - 1)/x = 0` or `(x^2 - 1)/x = 3`
`=> x^2 - 1 = 0` or `x^2 - 3x - 1 = 0`
`=> (x + 1)(x - 1) = 0` or `(-(-3) +- sqrt((-3)^2 - 4(1)(-1)))/(2(1))`
`=> x = -1` and `x = 1` or `x = (3 +- sqrt13)/2`
संबंधित प्रश्न
Solve the following quadratic equation by using formula method :
2x2 - 3x = 2
Find the value of ‘K’ for which x = 3 is a solution of the quadratic equation
`(K + 2)x^2 - kx + 6 = 0`
Solve : (x + 1)(2x + 8) = (x + 7)(x + 3)
Use the substitution y = 2x + 3 to solve for x, if 4(2x + 3)2 – (2x + 3) – 14 = 0.
`(x/(x+1))^2-5(x/(x+1)+6=0,x≠b,a`
`3^((x+2))+3^(-x)=10`
`2^2x-3.2^((x+2))+32=0`
Find the value of x, if a + 1 = 0 and x2 + ax – 6 = 0.
Find the values of a and b from the quadratic equation 2x2 – 5x + 7 = 0.
If ax + by = = a2 - b2 and bx + ay = 0, then the value of x + y is ______.