Advertisements
Advertisements
प्रश्न
Solve:
`xsinx dy/dx + (xcosx + sinx)y` = sin x
बेरीज
उत्तर
Given equation can be written as
`dy/dx + ((xcosx + sinx)y)/(xsinx) = sinx/(xsinx)`
∴ `dy/dx + (cot x + 1/x)y = 1/x`
This is a linear differential equation of the form
`dy/dx + Py` = Q
∴ P = `cot x + 1/x`,
Q = `1/x`
∴ I.F. = `e^(intPdx)`
= `e^(int(cotx + 1/x)dx)`
= `e^(logsinx + logx)`
= `e^(logxsinx)`
= x sin x
∴ The solution is given by
y(I.F.) = `intQ*(I.F.)dx + c`
`y*xsinx = int1/x*xsinx dx + c`
= `intsinx dx + c`
= `- cosx + c`
∴ xy sin x + cos x = c
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?