मराठी

State Demorgan'S Laws of Boolean Algebra and Verify Them Using a Truth Table. - Computer Science (C++)

Advertisements
Advertisements

प्रश्न

State DeMorgan's Laws of Boolean Algebra and verify them using a truth table.

उत्तर

Demorgan’s Law: This is the most powerful law of Boolean algebra. This states that:

1) (X Y)'  = X '.Y'

2) (X.Y)' = X' + Y'

The truth table for the second theorem is:

X Y X.Y (X.Y) X' Y' X'+Y'
0 0 0 1 1 1 1
0 1 0 1 1 0 1
1 0 0 1 0 1 1
1 1 1 0 0 0 0

To prove algebraically, we know that,

X + X' = 1 and X.X' = 0

So, if (X + Y)' = X'.Y' then
(X + Y) + X'.Y '= 1

Let us prove first part

(X+Y).X'.Y' = 1

(X +Y) + X'Y' = ((X+Y) + X').((X+Y)+Y')    [(X+Y)(X+Z) = X+Y.Z]

=(X+X'+Y).(X+Y+Y')

=(1+Y)(X+1)         [X+X' = 1inverse law] 

= 1.1 = 1             [1 +X = 1identity law ]

shaalaa.com
DeMorgan’S Law/Theorem and Their Applications
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2016-2017 (March) All India Set 4
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×