मराठी

Sum of the Areas of Two Squares is 640 M2. If the Difference of Their Perimeters is 64 M. Find the Sides of the Two Squares. - Mathematics

Advertisements
Advertisements

प्रश्न

Sum of the areas of two squares is 640 m2. If the difference of their perimeters is 64 m. Find the sides of the two squares.

उत्तर

Let the sides of the squares are m and = y m.Then

According to question,

Sum of the difference of their perimeter=64 m

4x - 4y = 64

x - y = 16

y = x - 16        .................... (1)

And sum of the areas of square = 640 m2

x2 + y2 = 640               ............ (2)

Putting the value of x in equation (2) from equation (1)

x2 + (x - 16)2 = 640

x2 + x2 - 32x + 256 = 640

2x2 - 32x + 256 - 640 = 0

2x2 - 32x - 384 = 0

2(x2 - 16x - 192) = 0

x2 - 16x - 192 = 0

x2 - 24x + 8x - 192 = 0

x(x - 24) + 8(x - 24) = 0

(x - 24)(x + 8) = 0

x - 24 = 0

x = 24

or

x + 8 = 0

x = -8

Sides of the square never are negative.

Therefore, putting the value of x in equation (1)

y = x - 16 = 24 - 16 = 8

Hence, sides of the square be 24m and 8m respectively.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Quadratic Equations - Exercise 4.11 [पृष्ठ ७१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 4 Quadratic Equations
Exercise 4.11 | Q 7 | पृष्ठ ७१
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×