Advertisements
Advertisements
प्रश्न
Suppose f(x) = eax + ebx, where a ≠ b, and that f"(x) – 2f'(x) – 15f(x) = 0 for all x. Then the product ab is ______.
पर्याय
25
9
–15
–9
MCQ
रिकाम्या जागा भरा
उत्तर
Suppose f(x) = eax + ebx, where a ≠ b, and that f"(x) – 2f'(x) – 15f(x) = 0 for all x. Then the product ab is –15.
Explanation:
(a2 – 2a – 15)eax + (b2 – 2b – 15)ebx = 0
or (a2 – 2a – 15) = 0 and b2 – 2b – 15 = 0
or (a – 5)(a + 3) = 0 and (b – 5)(b + 3) = 0
i.e., a = 5 or –3 and b = 5 or –3
∴ a ≠ b.
Hence, a = 5 and b = –3 or a = –3 and b = 5 or ab = –15.
shaalaa.com
Higher Order Derivatives
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?