मराठी

Suppose f(x) = eax + ebx, where a ≠ b, and that f"(x) – 2f'(x) – 15f(x) = 0 for all x. Then the product ab is ______. -

Advertisements
Advertisements

प्रश्न

Suppose f(x) = eax + ebx, where a ≠ b, and that f"(x) – 2f'(x) – 15f(x) = 0 for all x. Then the product ab is ______.

पर्याय

  • 25

  • 9

  • –15

  • –9

MCQ
रिकाम्या जागा भरा

उत्तर

Suppose f(x) = eax + ebx, where a ≠ b, and that f"(x) – 2f'(x) – 15f(x) = 0 for all x. Then the product ab is –15.

Explanation:

(a2 – 2a – 15)eax + (b2 – 2b – 15)ebx = 0

or (a2 – 2a – 15) = 0 and b2 – 2b – 15 = 0

or (a – 5)(a + 3) = 0 and (b – 5)(b + 3) = 0

i.e., a = 5 or –3 and b = 5 or –3

∴ a ≠ b.

Hence, a = 5 and b = –3 or a = –3 and b = 5 or ab = –15.

shaalaa.com
Higher Order Derivatives
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×