मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता १० वी

The 11th term and the 21st term of an A.P. are 16 and 29 respectively, then find the 41th term of that A.P. - Algebra

Advertisements
Advertisements

प्रश्न

The 11th term and the 21st term of an A.P. are 16 and 29 respectively, then find the 41th term of that A.P.

बेरीज

उत्तर

Let a be the first term and d be the common difference.

t11 = 16, t21 = 29      ...(Given)

tn = a + (n − 1)d

∴ t11 = a + (11 − 1)d

∴ 16 = a + 10d 

∴ a + 10d = 16      ...(i)

Similarly, 

tn = a + (n − 1)d

∴ t21 = a + (21 − 1)d

∴ 29 = a + 20d             

∴ a + 20d = 29    ...(ii)

Subtracting equation (i) from (ii), we get,

\[\begin{array}{l}  
\phantom{\texttt{0}}\texttt{ a + 20d = 29}\\ \phantom{\texttt{}}\texttt{- a + 10d = 16}\\ \hline\phantom{\texttt{}}\texttt{ (-) (-) (-)}\\ \hline \end{array}\]

∴ 10d = 13

∴ d = `13/10`

Putting the value of d = `13/10` in equation (i),

a + 10d = 16 

∴ `a + 10(13/10) = 16`

∴ a + 13 = 16

∴ a = 16 − 13

∴ a = 3

tn = a + (n − 1)d

∴ t41 = `3 + (41 − 1)(13/10)`

∴ t41 = `3 + 40 × 13/10`

∴ t41 = 3 + 52

∴ t41 = 55

∴ 41st term of the A.P. is 55.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Arithmetic Progression - Practice Set 3.2 [पृष्ठ ६६]

APPEARS IN

बालभारती Algebra (Mathematics 1) [English] 10 Standard SSC Maharashtra State Board
पाठ 3 Arithmetic Progression
Practice Set 3.2 | Q 7 | पृष्ठ ६६

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×