मराठी

The 16th Term of an Ap is 1 More than Twice Its 8th Term. If the 12th Term of the Ap is 47, Then Find Its Nth Term ? - Mathematics

Advertisements
Advertisements

प्रश्न

The 16th term of an AP is 1 more than twice its 8th term. If the 12th term of the AP is 47, then find its nth term ?

उत्तर

Let a be the first term and d be the common difference of the given A.P.

According to the given question,

16th term of the AP = 2 × 8th term of the AP + 1

i.e., a16 = 2a8 + 1

`a+(16-1)d=2[a+(8-1)d]+5` `thereforea_n=a+(n-1)d`

`rArra+15d=2[a+7b]+5`

`rArra+15d=2a+14d+5`

`rArrd=a+1                    .............(1)`

Also, 12th term, a12 = 47

`rArra+(12-1)d=47`

`rArra+11d=47`

`rArra+11(a+1)=47`           [Using(1)]

`rArra+11a+11=47`

`rArr12a=36`

`rArra=3`

On Putting the value of a in (1), we get d = 3 + 1 = 4

Thus, nth term of the AP, an+ (n − 1)d

On putting the respective values of a and d, we get

an= 3 + (n − 1) 4 = 3 + 4n − 4 = 4n − 1

Hence, nth term of the given AP is 4n − 1.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2011-2012 (March) Delhi Set 3
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×