मराठी

The angle between the lines 2x = 3y = – z and 6x = – y = – 4z is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The angle between the lines 2x = 3y = – z and 6x = – y = – 4z is ______.

पर्याय

  • 30°

  • 45°

  • 90°

MCQ
रिकाम्या जागा भरा

उत्तर

The angle between the lines 2x = 3y = – z and 6x = – y = – 4z is 90°.

Explanation:

2x = 3y = – z

6x = – y = – 4z

`x/(1/2) = y/(1/3) = z/-1`

`x/(1/6) = y/-1 = z/((-1)/4)`

Direction cosine's of both lines are `(1/2, 1/3, -1)` and `(1/6, -1, -1/4)` respectively.

(l1, m1, n1) = (3, 2, – 6) and (l2, m2, n2) = (2, – 12, – 3)

cos θ = l1l2 + m1m2 + n1n2

= 6 – 24 + 18

= 0

`\implies` cos θ = 0 = cos 90°

∴ θ = 90°.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2022-2023 (March) Delhi Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्‍न

Find the angle between the following pair of lines:

`vecr = 2hati - 5hatj + hatk + lambda(3hati - 2hatj + 6hatk) and vecr = 7hati - 6hatk + mu(hati + 2hatj + 2hatk)`


Find the angle between the following pair of lines:

`vecr = 3hati + hatj - 2hatk + lambda(hati - hatj - 2hatk) and vecr = 2hati - hatj -56hatk + mu(3hati - 5hatj - 4hatk)`


Find the angle between the lines whose direction ratios are a, b, c and b − c, c − a, a − b.


Find the angle between the line \[\frac{x - 1}{1} = \frac{y - 2}{- 1} = \frac{z + 1}{1}\]  and the plane 2x + y − z = 4.

  

Find the angle between the line joining the points (3, −4, −2) and (12, 2, 0) and the plane 3x − y + z = 1.

 

The line  \[\vec{r} = \hat{i} + \lambda\left( 2 \hat{i} - m \hat{j}  - 3 \hat{k}  \right)\]  is parallel to the plane  \[\vec{r} \cdot \left( m \hat{i}  + 3 \hat{j}  + \hat{k}  \right) = 4 .\] Find m

 

Show that the line whose vector equation is \[\vec{r} = 2 \hat{i}  + 5 \hat{j} + 7 \hat{k}+ \lambda\left( \hat{i}  + 3 \hat{j}  + 4 \hat{k}  \right)\] is parallel to the plane whose vector  \[\vec{r} \cdot \left( \hat{i} + \hat{j}  - \hat{k}  \right) = 7 .\]  Also, find the distance between them.

  

Find the angle between the line \[\frac{x - 2}{3} = \frac{y + 1}{- 1} = \frac{z - 3}{2}\] and the plane

3x + 4y + z + 5 = 0.

  

State when the line \[\vec{r} = \vec{a} + \lambda \vec{b}\]  is parallel to the plane  \[\vec{r} \cdot \vec{n} = d .\]Show that the line  \[\vec{r} = \hat{i}  + \hat{j}  + \lambda\left( 3 \hat{i}  - \hat{j}  + 2 \hat{k}  \right)\]  is parallel to the plane  \[\vec{r} \cdot \left( 2 \hat{j} + \hat{k} \right) = 3 .\]   Also, find the distance between the line and the plane.

 
 

Show that the plane whose vector equation is \[\vec{r} \cdot \left( \hat{i}  + 2 \hat{j}  - \hat{k}  \right) = 1\] and the line whose vector equation is  \[\vec{r} = \left( - \hat{i}  + \hat{j} + \hat{k}  \right) + \lambda\left( 2 \hat{i}  + \hat{j}  + 4 \hat{k}  \right)\]   are parallel. Also, find the distance between them. 


Find the angle between the line

\[\frac{x + 1}{2} = \frac{y}{3} = \frac{z - 3}{6}\]  and the plane 10x + 2y − 11z = 3.
 

Write the angle between the line \[\frac{x - 1}{2} = \frac{y - 2}{1} = \frac{z + 3}{- 2}\]  and the plane x + y + 4 = 0. 

 

 Find the angle between the two lines `2x = 3y = -z and 6x =-y = -4z`


Find the angle between the lines whose direction cosines are given by the equations l + m + n = 0, l2 + m2 – n2 = 0.


Show that the straight lines whose direction cosines are given by 2l + 2m – n = 0 and mn + nl + lm = 0 are at right angles.


If l1, m1, n1; l2, m2, n2; l3, m3, n3 are the direction cosines of three mutually perpendicular lines, prove that the line whose direction cosines are proportional to l1 + l2 + l3, m1 + m2 + m3, n1 + n2 + n3 makes equal angles with them.


`vecr = 3hati + hatj + 2hatk + l(hati - hatj + 2hatk)` and `vecr = 2hati + hatj + 56hatk + m(3hati - 5hatj + 4hatk)`


Assertion (A): The acute angle between the line `barr = hati + hatj + 2hatk  + λ(hati - hatj)` and the x-axis is `π/4`

Reason(R): The acute angle 𝜃 between the lines `barr = x_1hati + y_1hatj + z_1hatk  + λ(a_1hati + b_1hatj + c_1hatk)` and  `barr = x_2hati + y_2hatj + z_2hatk  + μ(a_2hati + b_2hatj + c_2hatk)` is given by cosθ = `(|a_1a_2 + b_1b_2 + c_1c_2|)/sqrt(a_1^2 + b_1^2 + c_1^2 sqrt(a_2^2 + b_2^2 + c_2^2)`


The angle between two lines `(x + 1)/2 = (y + 3)/2 = (z - 4)/(-1)` and `(x - 4)/1 = (y + 4)/2 = (z + 1)/2` is ______.


A straight line L through the point (3, –2) is inclined at an angle of 60° to the line `sqrt(3)x + y` = 1. If L also intersects the x-axis, then the equation of L is ______.


Find the angle between the following two lines:

`vecr = 2hati - 5hatj + hatk + λ(3hati + 2hatj + 6hatk)`

`vecr = 7hati - 6hatk + μ(hati + 2hatj + 2hatk)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×