Advertisements
Advertisements
प्रश्न
The c.d.f. of a discrete r.v. X is
X = x | -4 | -2 | -1 | 0 | 2 | 4 | 6 | 8 |
F(x) | 0.2 | 0.4 | 0.55 | 0.6 | 0.75 | 0.80 | 0.95 | 1 |
Then P(X ≤ 4|X > -1) = ?
पर्याय
`5/9`
`4/9`
`1/4`
`1/5`
MCQ
उत्तर
`5/9`
Explanation:
P(X = 0) = F(0) - F(-1) = 0.6 - 0.55 = 0.05
P(X = 2) = F(2) - F(0) = 0.75 - 0.6 = 0.15
P(X = 4) = 0.80 - 0.75 = 0.05
P(X = 6) = 0.95 - 0.80 = 0.15
P(X = 8) = 1 - 0.95 = 0.05
P(X ≤ 4|X > -1)
`= ("P"("X" = 0) + "P"("X" = 2) + "P"("X" = 4))/("P"("X" = 0) + "P"("X" = 2) + "P"("X" = 4) + "P"("X" = 6) + "P"("X" = 8))`
`= (0.05 + 0.15 + 0.05)/(0.05 + 0.15 + 0.05 + 0.15 + 0.05)`
`= 0.25/0.45`
`= 5/9`
shaalaa.com
Types of Random Variables
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?