मराठी

The differential equation for all the straight lines which are at the distance of 2 units from the origin is ______. -

Advertisements
Advertisements

प्रश्न

The differential equation for all the straight lines which are at the distance of 2 units from the origin is ______.

पर्याय

  • `1/4 (y - x ("d"y)/("d"x))^2 = 1 - (("d"y)/("d"x))^2`

  • `1/4 (y + x ("d"y)/("d"x))^2 = 1 + (("d"y)/("d"x))^2`

  • `1/4 (y - x ("d"y)/("d"x))^2 = 1 + (("d"y)/("d"x))^2`

  • `1/4 (y + x ("d"y)/("d"x))^2 = 1 - (("d"y)/("d"x))^2`

MCQ
रिकाम्या जागा भरा

उत्तर

The differential equation for all the straight lines which are at the distance of 2 units from the origin is `1/4 (y - x ("d"y)/("d"x))^2 = 1 + (("d"y)/("d"x))^2`.

Explanation:

The equation of the family of lines which are at the distance of2 units from the origin is

x cos α + y sin α = 2  .......(i)

Differentiating w.r.t. x, we get

`cos alpha + sin alpha ("d"y)/("d"x)` = 0  ......(ii)

By (i) – x × (ii), we get

`sin alpha (y - x ("d"y)/("d"x))` = 2

⇒ `y - x ("d"y)/("d"x)` = 2 cosec α  ......(iii)

From (ii), `(("d"y)/("d"x))^2 = cot^2alpha = "cosec"^2alpha - 1`

∴ `(("d"y)/("d"x))^2 = 1/4 (y - x ("d"y)/("d"x))^2 - 1`  ......[From (iii)]

∴ `1 + (("d"y)/("d"x))^2 = 1/4 (y - x ("d"y)/("d"x))^2`

shaalaa.com
Formation of Differential Equations
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×