Advertisements
Advertisements
प्रश्न
The eccentricity, foci and the length of the latus rectum of the ellipse x2 + 4y2 + 8y – 2x + 1 = 0 are respectively equal to ______.
पर्याय
`sqrt(3)/2;(1 +- sqrt(3), -1);2`
`sqrt(3)/2;(1 +- sqrt(3), 1);1`
`sqrt(3)/2;(1 +- sqrt(3), -1);1`
`sqrt(3)/2;(1 +- sqrt(3), 1);2`
उत्तर
The eccentricity, foci and the length of the latus rectum of the ellipse x2 + 4y2 + 8y – 2x + 1 = 0 are respectively equal to `underlinebb(sqrt(3)/2;(1 +- sqrt(3), -1);1)`.
Explanation:
Given equation of ellipse is x2 + 4y2 + 8y – 2x + 1 = 0
⇒ (x – 1)2 + 4(y2 + 2y) = 0
⇒ `(x - 1)^2/4 + ("y" + 1)^2/1` = 1
∴ Eccentricity of ellipse is given by
e = `sqrt(1 - "b"^2/"a"^2)`
= `sqrt(1 - 1/4)`
= `sqrt(3/4)`
= `sqrt(3)/2`
Foci of the ellipse are given by (1 ± ae, –1)
Where ae = `sqrt("a"^2 - "b"^2)`
⇒ ae = `sqrt(4 - 1) = sqrt(3)`
⇒ Foci are `(1 +- sqrt(3), -1)`
Latus rectum of the ellipse is given by
= `(2"b"^2)/"a" = (2 xx 1)/2`
= 1