Advertisements
Advertisements
प्रश्न
The following are the ages of 300 patients getting medical treatment in a hospital on a particular day:
Age (in years) | 10 – 20 | 20 – 30 | 30 – 40 | 40 – 50 | 50 – 60 | 60 – 70 |
Number of patients | 60 | 42 | 55 | 70 | 53 | 20 |
Form: Less than type cumulative frequency distribution.
उत्तर
We observe that the number of patients which take medical treatment in a hospital on a particular day less than 10 is 0. Similarly, less than 20 include the number of patients which take medical treatment from 0 – 10 as well as the number of patients which take medical treatment from 10 – 20.
So, the total number of patients less than 20 is 0 + 60 = 60, we say that the cumulative frequency of the class 10 – 20 is 60. Similarly, for other class.
Less than type | |
Age (in year) | Number of patients |
Less than 10 | 0 |
Less than 20 | 60 + 0 = 60 |
Less than 30 | 60 + 42 = 102 |
Less than 40 | 102 + 55 = 157 |
Less than 50 | 157 + 70 = 227 |
Less than 60 | 227 + 53 = 280 |
Less than 70 | 280 + 20 = 300 |
APPEARS IN
संबंधित प्रश्न
During the medical check-up of 35 students of a class, their weights were recorded as follows:
Weight (in kg | Number of students |
Less than 38 | 0 |
Less than 40 | 3 |
Less than 42 | 5 |
Less than 44 | 9 |
Less than 46 | 14 |
Less than 48 | 28 |
Less than 50 | 32 |
Less than 52 | 35 |
Draw a less than type ogive for the given data. Hence obtain the median weight from the graph verify the result by using the formula.
The following is the cumulative frequency distribution ( of less than type ) of 1000 persons each of age 20 years and above . Determine the mean age .
Age below (in years): | 30 | 40 | 50 | 60 | 70 | 80 |
Number of persons : | 100 | 220 | 350 | 750 | 950 | 1000 |
The median of the distribution given below is 14.4 . Find the values of x and y , if the total frequency is 20.
Class interval : | 0-6 | 6-12 | 12-18 | 18-24 | 24-30 |
Frequency : | 4 | x | 5 | y | 1 |
The mode of a frequency distribution can be determined graphically from ______.
In the formula `barx=a+h((sumf_iu_i)/(sumf_i))`, for finding the mean of grouped frequency distribution ui = ______.
Change the following distribution to a 'more than type' distribution. Hence draw the 'more than type' ogive for this distribution.
Class interval: | 20−30 | 30−40 | 40−50 | 50−60 | 60−70 | 70−80 | 80−90 |
Frequency: | 10 | 8 | 12 | 24 | 6 | 25 | 15 |
Look at the following table below.
Class interval | Classmark |
0 - 5 | A |
5 - 10 | B |
10 - 15 | 12.5 |
15 - 20 | 17.5 |
The value of A and B respectively are?
The following table shows the cumulative frequency distribution of marks of 800 students in an examination:
Marks | Number of students |
Below 10 | 10 |
Below 20 | 50 |
Below 30 | 130 |
Below 40 | 270 |
Below 50 | 440 |
Below 60 | 570 |
Below 70 | 670 |
Below 80 | 740 |
Below 90 | 780 |
Below 100 | 800 |
Construct a frequency distribution table for the data above.
Find the unknown entries a, b, c, d, e, f in the following distribution of heights of students in a class:
Height (in cm) |
Frequency | Cumulative frequency |
150 – 155 | 12 | a |
155 – 160 | b | 25 |
160 – 165 | 10 | c |
165 – 170 | d | 43 |
170 – 175 | e | 48 |
175 – 180 | 2 | f |
Total | 50 |
The following are the ages of 300 patients getting medical treatment in a hospital on a particular day:
Age (in years) | 10 – 20 | 20 – 30 | 30 – 40 | 40 – 50 | 50 – 60 | 60 – 70 |
Number of patients | 60 | 42 | 55 | 70 | 53 | 20 |
Form: More than type cumulative frequency distribution.