Advertisements
Advertisements
प्रश्न
The general solution of differential equation `dx/dy` = cos (x + y) is ______.
पर्याय
`tan((x + y)/2)` = y + c
`tan((x + y)/c)` = x + c
`cot((x + y)/2)` = y + c
`cot((x + y)/2)` = x + c
उत्तर
The general solution of differential equation `dx/dy` = cos (x + y) is `underlinebb(tan((x + y)/2) = y + c)`.
Explanation:
`dx/dy` = cos (x + y)
`\implies dy/dx = 1/(cos(x + y))`
Put x + y = V
Differentiating w.r.t. ‘x’
`1 + dy/dx = (dV)/dx`
`\implies dy/dx = (dV)/dx - 1`
`\implies (dV)/dx - 1 = 1/cosV`
`\implies (dV)/dx = 1/cosV + 1`
`\implies (dV)/dx = (1 + cosV)/cosV`
`\implies cosV/((1 + cosV)) dV` = dx
Integrate both sides, we get :
`int ((1 + cosV) - 1)/(1 + cosV) dV = int dx`
`\implies int[1 - 1/(2cos^2 V/2)]dV = int dx`
`\implies V - 1/2 (tan V/2)/(1/2)` = x + C1
`\implies x + y - tan((x + y)/2)` = x + C1
`\implies tan((x + y)/2)` = y + C ...[∵ C = –C1]