Advertisements
Advertisements
प्रश्न
The general solution of the differential equation (1 + y2) + `(x - e^(tan^-1 y)) "dy"/"dx"` = 0 is.
पर्याय
`x * "e"^(tan^-1 y) = ("e"^(tan^-1 y))^2/2` + C
`"e"^(tan^-1 y) = ("e"^(tan^-1 x))^2` + C
`x * "e"^(tan^-1 y) = ("e"^(tan^-1) x)^2/2` + C
`"e"^(tan^-1 y) = ("e"^(tan^-1 y))^2` + C
MCQ
उत्तर
`x * "e"^(tan^-1 y) = ("e"^(tan^-1 y))^2/2` + C
Explanation:
Given equation,
(1 + y2) + `(x - e^(tan^-1 y)) "dy"/"dx"` = 0
`=> "dx"/"dy" + x/(1 + y^2) = ("e"^(tan^-1 y))/(1 + y^2)`
∴ IF = `"e"^(int 1/(1 + y^2)"dy")`
`= "e"^(tan^-1 "y")`
Solution of given differential equation is,
`x"e"^(tan^-1 "y") = int ("e"^(2 tan^-1 "y"))/(1 + y^2)`dy + c
`x "e"^(tan^-1 "y") = ("e"^(2 tan^-1 "y"))/2` + c = `("e"^(tan^-1 "y"))^2/2` + c
shaalaa.com
Solution of a Differential Equation
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?