मराठी

The hyperbola x2a2-y2b2 = 1 passes through the point (35,1) and the length of its latus rectum is 43 units. The length of the conjugate axis is ______. -

Advertisements
Advertisements

प्रश्न

The hyperbola `x^2/a^2 - y^2/b^2` = 1 passes through the point `(3sqrt(5), 1)` and the length of its latus rectum is `4/3` units. The length of the conjugate axis is ______.

पर्याय

  • 2 units

  • 3 units

  • 4 units

  • 5 units

MCQ
रिकाम्या जागा भरा

उत्तर

The hyperbola `x^2/a^2 - y^2/b^2` = 1 passes through the point `(3sqrt(5), 1)` and the length of its latus rectum is `4/3` units. The length of the conjugate axis is 4 units.

Explanation:

`x^2/a^2 - y^2/b^2` = 1

Hyperbola passes through `(3sqrt(5), 1)`

∴ `(3sqrt(5))^2/a^2 - 1/b^2` = 1

`45/a^2 - 1/b^2` = 1  ...(i)

Now length of latus rectum = `(2b^2)/a`

`\implies 4/3 = (2b^2)/a`

`\implies 2/3 = b^2/a`

`\implies` a = `(3b^2)/2`  ...(ii)

Putting the value of ‘a’ from equation (ii) in equation (i),

`\implies (45 xx 4)/(9b^4) - 1/b^2` = 1

`\implies 20/b^4 - 1/b^2` = 1

20 – b2 = b4

b4 + b2 – 20 = 0

b4 + 5b2 – 4b2 – 20 = 0

b2 (b2 + 5) – 4(b2 + 5) = 0

(b2 – 4) (b2 + 5) = 0

b2 = 4, b2 = – 5

∴ b2 = 4 `\implies` b = 2

Now length of conjugate axis = 2b = 2(2) = 4

shaalaa.com
Conic Sections - Hyperbola
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×