Advertisements
Advertisements
प्रश्न
The lines `(x - 1)/2 = (y + 1)/2 = (z - 1)/4` and `(x - 3)/1 = (y - k)/2 = z/1` intersect each other at point
पर्याय
(–2, –4, 5)
(–2, –4, –5)
(2, 4, –5)
(2, –5)
MCQ
रिकाम्या जागा भरा
उत्तर
(–2, –4, –5)
Explanation:
Since, `(x - 1)/2 = (y + 1)/2 = (z - 1)/4` = λ ...(i)
and `(x - 3)/1 = (y - 6)/2 = z/1` ...(ii)
Now, any point on the line (i) is P(2λ + 1, 2λ – 1, 4λ + 1)
∴ `(2λ + 1 - 3)/1 = (2λ - 1 - 6)/2 = (4λ + 1)/1` ...[from (ii)]
So, 4λ – 4 = 2λ – 7
`\implies` 4λ – 2λ = –7 + 4
`\implies` 2λ = –3
Hence, point of intersection P is
= `(2 xx (-3/2) + 1, 2 xx (-3/2) - 1, 4 xx (-3/2) + 1)`
= (–2, –4, –5)
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?