Advertisements
Advertisements
प्रश्न
The lines x = ay + b, z = cy + d and x = a'y + b', z = c'y + d' are perpendicular to each other, if ______
पर्याय
aa' + cc' = 1
aa' + cc' = -1
ac + a'c' = 1
ac + a'c' = -1
MCQ
रिकाम्या जागा भरा
उत्तर
The lines x = ay + b, z = cy + d and x = a'y + b', z = c'y + d' are perpendicular to each other, if aa' + cc' = -1.
Explanation:
Given equations of lines are
x = ay + b, z = cy + d
⇒ `(x - b)/a = y/1, (z - d)/c = y/1`
⇒ `(x - b)/a = y/1 = (z - d)/c`
and x = a'y + b', z = c'y + d'
⇒ `(x - b^')/a^' = y/1 = (z - d^')/c^'= y/1`
⇒ `(x - b^')/a^' = y/1 = (x - d^')/c^'`
Since the lines are perpendicular to each other,
a1a2 + b1b2 + c1c2 = 0
⇒ >aa' + 1(1) + cc' = 0
⇒ aa' + cc' = -1
shaalaa.com
Vector and Cartesian Equations of a Line
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?