मराठी

The locus of the mid-point of the portion intercepted between the axes of the variable line x cos α + y sin α = p, where p is a constant, is -

Advertisements
Advertisements

प्रश्न

The locus of the mid-point of the portion intercepted between the axes of the variable line x cos α + y sin α = p, where p is a constant, is 

पर्याय

  • x2 + y2 = 4p2

  • `1/x^2 + 1/y^2 = 4/"p"^2`

  • `x^2 + y^2 = 4/"p"^2`

  • `1/x^2 + 1/y^2 = 2/"p"^2`

MCQ

उत्तर

`1/x^2 + 1/y^2 = 4/"p"^2`

Explanation:

The straight line x cos α + y sin α = p meets the X-axis at the point A `("p"/(cos alpha), 0)` and the Y-axis at the point B`(0, "p"/(sin alpha))`.

Let (h, k) be the co-ordinates of the middle point of the line segment AB.

Then, h = `"p"/(2 cos alpha)` and k = `"p"/(2 sin alpha)`

⇒ cos α = `"p"/"2h" and sin alpha = "p"/"2k"`

cos2 α + sin2 α = `"p"^2/"4h"^2 + "p"^2/"4k"^2`

`=> 1 = "p"^2/4 (1/"h"^2 + 1/"k"^2)`

`=> 1/"h"^2 + 1/"k"^2 = 4/"p"^2`

Hence locus of the point (h, k) is

`1/x^2 + 1/y^2 = 4/"p"^2`

shaalaa.com
Equation of Locus
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×