मराठी

The Number of Decimal Place After Which the Decimal Expansion of the Rational Number 23 2 2 × 5 Will Terminate, is - Mathematics

Advertisements
Advertisements

प्रश्न

The number of decimal place after which the decimal expansion of the rational number \[\frac{23}{2^2 \times 5}\] will terminate, is

पर्याय

  • 1

  • 2

  • 3

  • 4

MCQ

उत्तर

We have,

`23/(2^2xx5^1)`

Theorem states: 

Let `x= p/q` be a rational number, such that the prime factorization of q is of the form `2^mxx5^n`, where m andn are non-negative integers.

Then, x has a decimal expression which terminates after k places of decimals, where k is the larger of mand n.

This is given that the prime factorization of the denominator is of the form`2^mxx5^n`.

Hence, it has terminating decimal expansion which terminates after 2 places of decimal.

Hence, the correct choice is (b).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Real Numbers - Exercise 1.8 [पृष्ठ ५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 1 Real Numbers
Exercise 1.8 | Q 5 | पृष्ठ ५९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×