Advertisements
Advertisements
प्रश्न
The number of different four-digit numbers that can be formed with the digits 2, 3, 4, 7 and using each digit only once is ______.
पर्याय
120
96
24
100
उत्तर
The number of different four-digit numbers that can be formed with the digits 2, 3, 4, 7 and using each digit only once is 24.
Explanation:
Four-digit numbers are to be formed from the digits 2, 3, 4, 7 without repetition
So, the required 4-digit numbers = 4P4
= 4!
= 4 × 3 × 2 × 1
= 24
APPEARS IN
संबंधित प्रश्न
How many 3-digit numbers can be formed from the digits 1, 2, 3, 4 and 5 assuming that repetition of the digits is allowed?
How many 3-digit numbers can be formed from the digits 1, 2, 3, 4 and 5 assuming that repetition of the digits is not allowed?
How many two letter words can be formed using letters from the word SPACE, when repetition of letters is allowed?
A letter lock contains 3 rings, each ring containing 5 different letters. Determine the maximum number of false trials that can be made before the lock is opened?
Select the correct answer from the given alternatives.
A college offers 5 courses in the morning and 3 in the evening. The number of ways a student can select exactly one course, either in the morning or in the evening
Select the correct answer from the given alternatives.
A college has 7 courses in the morning and 3 in the evening. The possible number of choices with the student if he wants to study one course in the morning and one in the evening is -
There are 3 types of toy car and 2 types of toy train available in a shop. Find the number of ways a baby can buy a toy car and a toy train?
Three persons enter into a conference hall in which there are 10 seats. In how many ways they can take their seats?
Given four flags of different colours, how many different signals can be generated if each signal requires the use of three flags, one below the other?
Four children are running a race:
In how many different ways could they finish the race?
Count the number of three-digit numbers which can be formed from the digits 2, 4, 6, 8 if repetitions of digits is allowed
Count the number of three-digit numbers which can be formed from the digits 2, 4, 6, 8 if repetitions of digits is not allowed
How many numbers are there between 100 and 500 with the digits 0, 1, 2, 3, 4, 5? if the repetition of digits is not allowed
Count the numbers between 999 and 10000 subject to the condition that there are at least one of the digits is repeated
How many three-digit numbers, which are divisible by 5, can be formed using the digits 0, 1, 2, 3, 4, 5 if repetition of digits are allowed?
To travel from a place A to place B, there are two different bus routes B1, B2, two different train routes T1, T2 and one air route A1. From place B to place C there is one bus route say B1, two different train routes say T1, T2 and one air route A1. Find the number of routes of commuting from place A to place C via place B without using similar mode of transportation
Find the value of 3! × 2!
Evaluate `("n"!)/("r"!("n" - "r")!)` when n = 6, r = 2
Evaluate `("n"!)/("r"!("n" - "r")!)` when for any n with r = 2
Find the value of n if (n + 1)! = 20(n − 1)!
Choose the correct alternative:
In an examination there are three multiple choice questions and each question has 5 choices. Number of ways in which a student can fail to get all answer correct i
Choose the correct alternative:
The number of ways in which the following prize be given to a class of 30 boys first and second in mathematics, first and second in physics, first in chemistry and first in English is
Choose the correct alternative:
The number of five digit telephone numbers having at least one of their digits repeated i
In how many ways can this diagram be coloured subject to the following two conditions?
(i) Each of the smaller triangle is to be painted with one of three colours: red, blue or green.
(ii) No two adjacent regions have the same colour.
In an examination there are three multiple choice questions and each question has 4 choices. Number of ways in which a student can fail to get all answer correct is ______.
Eight chairs are numbered 1 to 8. Two women and 3 men wish to occupy one chair each. First the women choose the chairs from amongst the chairs 1 to 4 and then men select from the remaining chairs. Find the total number of possible arrangements.
The number of possible outcomes when a coin is tossed 6 times is ______.