Advertisements
Advertisements
प्रश्न
The number of ways to arrange the letters of the word CHEESE are
पर्याय
120
240
720
6
उत्तर
120
Total number of arrangements of the letters of the word CHEESE = Number of arrangements of 6 things taken all at a time, of which 3 are of one kind =\[\frac{6!}{3!}\]= 120
APPEARS IN
संबंधित प्रश्न
Evaluate 4! – 3!
Is 3! + 4! = 7!?
How many 4-digit numbers are there with no digit repeated?
Find x in each of the following:
Find x in each of the following:
Which of the following are true:
(2 × 3)! = 2! × 3!
A customer forgets a four-digits code for an Automatic Teller Machine (ATM) in a bank. However, he remembers that this code consists of digits 3, 5, 6 and 9. Find the largest possible number of trials necessary to obtain the correct code.
How many 5-digit telephone numbers can be constructed using the digits 0 to 9. If each number starts with 67 and no digit appears more than once?
Find the number of ways in which 8 distinct toys can be distributed among 5 childrens.
Evaluate each of the following:
8P3
Evaluate each of the following:
6P6
Write the number of numbers that can be formed using all for digits 1, 2, 3, 4 ?
How many numbers greater than 10 lacs be formed from 2, 3, 0, 3, 4, 2, 3 ?
The product of r consecutive positive integers is divisible by
The number of different ways in which 8 persons can stand in a row so that between two particular persons A and B there are always two persons, is
Evaluate `("n"!)/("r"!("n" - "r")!)` when n = 5 and r = 2.
If (n+2)! = 60[(n–1)!], find n
How many numbers lesser than 1000 can be formed using the digits 5, 6, 7, 8, and 9 if no digit is repeated?
If nP4 = 12(nP2), find n.
In how many ways 5 boys and 3 girls can be seated in a row, so that no two girls are together?
Find the rank of the word ‘CHAT’ in the dictionary.
The greatest positive integer which divide n(n + 1) (n + 2) (n + 3) for all n ∈ N is:
For all n > 0, nC1 + nC2 + nC3 + …… + nCn is equal to:
If `""^10"P"_("r" - 1)` = 2 × 6Pr, find r
Determine the number of permutations of the letters of the word SIMPLE if all are taken at a time?
8 women and 6 men are standing in a line. In how many arrangements will all 6 men be standing next to one another?
Find the distinct permutations of the letters of the word MISSISSIPPI?
Each of the digits 1, 1, 2, 3, 3 and 4 is written on a separate card. The six cards are then laid out in a row to form a 6-digit number. How many of these 6-digit numbers are divisible by 4?
If the letters of the word GARDEN are permuted in all possible ways and the strings thus formed are arranged in the dictionary order, then find the ranks of the words
GARDEN
Find the sum of all 4-digit numbers that can be formed using digits 1, 2, 3, 4, and 5 repetitions not allowed?
In how many ways can 5 children be arranged in a line such that two particular children of them are never together.
In how many ways 3 mathematics books, 4 history books, 3 chemistry books and 2 biology books can be arranged on a shelf so that all books of the same subjects are together.
Ten different letters of alphabet are given. Words with five letters are formed from these given letters. Then the number of words which have atleast one letter repeated is ______.
Find the number of permutations of n distinct things taken r together, in which 3 particular things must occur together.
A five-digit number divisible by 3 is to be formed using the numbers 0, 1, 2, 3, 4 and 5 without repetitions. The total number of ways this can be done is ______.
Using the digits 1, 2, 3, 4, 5, 6, 7, a number of 4 different digits is formed. Find
C1 | C2 |
(a) How many numbers are formed? | (i) 840 |
(b) How many number are exactly divisible by 2? | (i) 200 |
(c) How many numbers are exactly divisible by 25? | (iii) 360 |
(d) How many of these are exactly divisible by 4? | (iv) 40 |
Let b1, b2, b3, b4 be a 4-element permutation with bi ∈ {1, 2, 3, .......,100} for 1 ≤ i ≤ 4 and bi ≠ bj for i ≠ j, such that either b1, b2, b3 are consecutive integers or b2, b3, b4 are consecutive integers. Then the number of such permutations b1, b2, b3, b4 is equal to ______.
If the letters of the word 'MOTHER' be permuted and all the words so formed (with or without meaning) be listed as in a dictionary, then the position of the word 'MOTHER' is ______.