मराठी

The Owner of a Milk Store Finds That, He Can Sell 980 Litres of Milk Each Week at Rs 14/Litre and 1220 Litres of Milk Each Week at Rs 16/Litre. - Mathematics

Advertisements
Advertisements

प्रश्न

The owner of a milk store finds that, he can sell 980 litres of milk each week at Rs 14/litre and 1220 litres of milk each week at Rs 16/litre. Assuming a linear relationship between selling price and demand, how many litres could he sell weekly at Rs 17/litre?

बेरीज

उत्तर

Assuming L (litres) along x-axis and R(rupees) along y-axis, we have two points (980, 14) and (1220, 16).

By two point form, the point (L, R) satisfies the equation.

`"y" - 980 = (1220 - 980)/(16 - 14) (x - 14)`

= y - 980 = `240/2 (x - 14)`

y - 980 + 120 (x – 14)

i.e., y = 120 (x - 14) + 980

When x = Rs. 17/litre,

y = 120 (17 - 14) + 980

= y 120 × 3 + 980 = 360 + 980 = 1340

Thus, the owner of the milk store could sell 1340 litres of milk weekly at Rs. 17/litre.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Straight Lines - Exercise 10.2 [पृष्ठ २२०]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 10 Straight Lines
Exercise 10.2 | Q 17 | पृष्ठ २२०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the equation of the line which satisfy the given condition:

Write the equations for the x and y-axes.


Find the equation of the line which satisfy the given condition:

Passing though (0, 0) with slope m.


Find the equation of the line which satisfy the given condition:

Passing though `(2, 2sqrt3)` and is inclined with the x-axis at an angle of 75°.


Find the equation of the line which satisfy the given condition:

Intersects the x-axis at a distance of 3 units to the left of origin with slope –2.


Find the equation of the line which satisfy the given condition:

Passing through the points (–1, 1) and (2, –4).


Find the equation of the line which is at a perpendicular distance of 5 units from the origin and the angle made by the perpendicular with the positive x-axis is 30°


The vertices of ΔPQR are P (2, 1), Q (–2, 3) and R (4, 5). Find equation of the median through the vertex R.


Find the equation of a line that cuts off equal intercepts on the coordinate axes and passes through the point (2, 3).


Find equation of the line passing through the point (2, 2) and cutting off intercepts on the axes whose sum is 9.


The length L (in centimetre) of a copper rod is a linear function of its Celsius temperature C. In an experiment, if L = 124.942 when C = 20 and L = 125.134 when C = 110, express L in terms of C


Point R (h, k) divides a line segment between the axes in the ratio 1:2. Find equation of the line.


By using the concept of equation of a line, prove that the three points (3, 0), (–2, –2) and (8, 2) are collinear.


If the lines y = 3x + 1 and 2y = x + 3 are equally inclined to the line y = mx + 4, find the value of m.


Classify the following pair of line as coincident, parallel or intersecting:

3x + 2y − 4 = 0 and 6x + 4y − 8 = 0.


Find the equation to the straight line parallel to 3x − 4y + 6 = 0 and passing through the middle point of the join of points (2, 3) and (4, −1).


Prove that the lines 2x − 3y + 1 = 0, x + y = 3, 2x − 3y = 2  and x + y = 4 form a parallelogram.


Find the angle between the lines x = a and by + c = 0..


Prove that the area of the parallelogram formed by the lines a1x + b1y + c1 = 0, a1x + b1yd1 = 0, a2x + b2y + c2 = 0, a2x + b2y + d2 = 0 is  \[\left| \frac{\left( d_1 - c_1 \right)\left( d_2 - c_2 \right)}{a_1 b_2 - a_2 b_1} \right|\] sq. units.
Deduce the condition for these lines to form a rhombus.

 


Prove that the area of the parallelogram formed by the lines 3x − 4y + a = 0, 3x − 4y + 3a = 0, 4x − 3y− a = 0 and 4x − 3y − 2a = 0 is \[\frac{2}{7} a^2\] sq. units..


Show that the diagonals of the parallelogram whose sides are lx + my + n = 0, lx + my + n' = 0, mx + ly + n = 0 and mx + ly + n' = 0 include an angle π/2.


Show that the point (3, −5) lies between the parallel lines 2x + 3y − 7 = 0 and 2x + 3y + 12 = 0 and find the equation of lines through (3, −5) cutting the above lines at an angle of 45°.


Write an equation representing a pair of lines through the point (a, b) and parallel to the coordinate axes.


Three vertices of a parallelogram taken in order are (−1, −6), (2, −5) and (7, 2). The fourth vertex is


Let ABC be a triangle with A(–3, 1) and ∠ACB = θ, 0 < θ < `π/2`. If the equation of the median through B is 2x + y – 3 = 0 and the equation of angle bisector of C is 7x – 4y – 1 = 0, then tan θ is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×