Advertisements
Advertisements
प्रश्न
The particular solution of the differential equation `y(1 + log x) dx/dy - x log x = 0`, when x = e, y = e2 is ______.
पर्याय
y = ex log x
ey = x log x
xy = e log x
y log x = ex
उत्तर
The particular solution of the differential equation `y(1 + log x) dx/dy - x log x = 0`, when x = e, y = e2 is y = ex log x.
Explanation:
The given differential equation is
`y(1 + log x) [dx/dy] - x log x = 0`
`\implies ((1 + log x)dx)/(xlogx) = dy/y`
`\implies (1/(xlogx) + 1/x)dx = 1/y dy`
After integrating on both sides, we get
`int(1/(xlogx) + 1/x)dx = int 1/y dy`
Let log x = t
`\implies 1/x dx` = dt
So, `int1/t dt + int 1/x dx = int 1/y dy`
`\implies` log t + log x = log y + log c
`\implies` log tx = log yc
`\implies` tx = yc
`\implies` x log x = yc
When x = e then y = e2
Therefore, e log e = e2c
`\implies` e × 1 = e2c
`\implies` c = `1/e`
Hence, x log x = `y/e` `\implies` y = ex log x