मराठी

The particular solution of the differential equation y(1+logx)dxdy-xlogx=0, when x = e, y = e2 is ______. -

Advertisements
Advertisements

प्रश्न

The particular solution of the differential equation `y(1 + log x) dx/dy - x log x = 0`, when x = e, y = e2 is ______.

पर्याय

  • y = ex log x

  • ey = x log x

  • xy = e log x

  • y log x = ex

MCQ
रिकाम्या जागा भरा

उत्तर

The particular solution of the differential equation `y(1 + log x) dx/dy - x log x = 0`, when x = e, y = e2 is y = ex log x.

Explanation:

The given differential equation is 

 `y(1 + log x) [dx/dy] - x log x = 0`

`\implies ((1 + log x)dx)/(xlogx) = dy/y`

`\implies (1/(xlogx) + 1/x)dx = 1/y dy`

After integrating on both sides, we get

`int(1/(xlogx) + 1/x)dx = int 1/y dy`

Let log x = t

`\implies 1/x dx` = dt

So, `int1/t dt + int 1/x dx = int 1/y dy`

`\implies` log t + log x = log y + log c

`\implies` log tx = log yc

`\implies` tx = yc

`\implies` x log x = yc

When x = e then y = e2

Therefore, e log e = e2c

`\implies` e × 1 = e2c

`\implies` c = `1/e`

Hence, x log x = `y/e` `\implies` y = ex log x

shaalaa.com
Solution of a Differential Equation
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×