Advertisements
Advertisements
प्रश्न
The radii of the circular ends of a frustum of a cone are 14 cm and 8 cm. If the height of the frustum is 8 cm, find: (π = 3.14)
- Curved surface area of frustum.
- Total surface area of the frustum.
- Volume of the frustum.
उत्तर
r1 = 14 cm, r2 = 8 cm, h = 8 cm
Slant height of the frustum = l = `sqrt(h^2 + (r_1 - r_2)^2)`
= `sqrt(8^2 + (14 - 8)^2)`
= `sqrt((8)^2 + (6)^2)`
= `sqrt(64 + 36)`
= `sqrt(100)`
= 10 cm
(i) Curved surface area of the frustum = π(r1 + r2)l
= 3.14 × (14 + 8) × 10
= 3.14 × 22 × 10
= 3.14 × 220
= 690.8 cm2
(ii) Total surface area of frustum = `πl(r_1 + r_2) + πr_1^2 + πr_2^2`
= 3.14 × 10(14 + 8) + (3.14 × 14)2 + (3.14 × 8)2
= 3.14 × 10(22) + (3.14 × 14)2 + (3.14 × 8)2
= 3.14 × 220 + (3.14 × 14)2 + (3.14 × 8)2
= 690.8 + 3.14 × 142 + 3.14 × 82
= 690.8 + 3.14 × 196 + 3.14 × 64
= 690.8 + 615.44 + 200.96
= 1507.2 cm2
(iii) Volume of the frustum = `1/3 pih(r_1^2 + r_2^2 + r_1 xx r_2)`
= `1/3 xx 3.14 xx 8 xx (14^2 + 8^2 + 14 xx 8)`
= `1/3 xx 3.14 xx 8 xx (196 + 64 + 112)`
= `1/3 xx 3.14 xx 8 xx (372)`
= `1/3 xx 3.14 xx 2976`
= `1/3 xx 9344.64`
= 3114.88 cm3